IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v215y2020i1p118-130.html
   My bibliography  Save this article

Ultrahigh dimensional precision matrix estimation via refitted cross validation

Author

Listed:
  • Wang, Luheng
  • Chen, Zhao
  • Wang, Christina Dan
  • Li, Runze

Abstract

This paper develops a new estimation procedure for ultrahigh dimensional sparse precision matrix, the inverse of covariance matrix. Regularization methods have been proposed for sparse precision matrix estimation, but they may not perform well with ultrahigh dimensional data due to the spurious correlation. We propose a refitted cross validation (RCV) method for sparse precision matrix estimation based on its Cholesky decomposition, which does not require the Gaussian assumption. The proposed RCV procedure can be easily implemented with existing software for ultrahigh dimensional linear regression. We establish the consistency of the proposed RCV estimation and show that the rate of convergence of the RCV estimation without assuming banded structure is the same as that of those assuming the banded structure in Bickel and Levina (2008b). Monte Carlo studies were conducted to access the finite sample performance of the RCV estimation. Our numerical comparison shows that the RCV estimation outperforms the existing ones in various scenarios. We further apply the RCV estimation for an empirical analysis of asset allocation.

Suggested Citation

  • Wang, Luheng & Chen, Zhao & Wang, Christina Dan & Li, Runze, 2020. "Ultrahigh dimensional precision matrix estimation via refitted cross validation," Journal of Econometrics, Elsevier, vol. 215(1), pages 118-130.
  • Handle: RePEc:eee:econom:v:215:y:2020:i:1:p:118-130
    DOI: 10.1016/j.jeconom.2019.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440761930171X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianqing Fan & Shaojun Guo & Ning Hao, 2012. "Variance estimation using refitted cross‐validation in ultrahigh dimensional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 37-65, January.
    2. Zhao Chen & Jianqing Fan & Runze Li, 2018. "Error Variance Estimation in Ultrahigh-Dimensional Additive Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 315-327, January.
    3. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Jianhua Z. Huang & Naiping Liu & Mohsen Pourahmadi & Linxu Liu, 2006. "Covariance matrix selection and estimation via penalised normal likelihood," Biometrika, Biometrika Trust, vol. 93(1), pages 85-98, March.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Adam J. Rothman & Elizaveta Levina & Ji Zhu, 2010. "A new approach to Cholesky-based covariance regularization in high dimensions," Biometrika, Biometrika Trust, vol. 97(3), pages 539-550.
    8. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    9. Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
    10. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    11. Zhao Ren & Yongjian Kang & Yingying Fan & Jinchi Lv, 2019. "Tuning-Free Heterogeneous Inference in Massive Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1908-1925, October.
    12. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
    13. Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Wanfeng & Ma, Xiaoyan, 2024. "A new approach for ultrahigh-dimensional covariance matrix estimation," Statistics & Probability Letters, Elsevier, vol. 204(C).
    2. Zhou, Jia & Li, Yang & Zheng, Zemin & Li, Daoji, 2022. "Reproducible learning in large-scale graphical models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Cai, Zhanrui & Li, Changcheng & Wen, Jiawei & Yang, Songshan, 2024. "Asset splitting algorithm for ultrahigh dimensional portfolio selection and its theoretical property," Journal of Econometrics, Elsevier, vol. 239(2).
    4. Liang, Wanfeng & Wu, Yue & Ma, Xiaoyan, 2022. "Robust sparse precision matrix estimation for high-dimensional compositional data," Statistics & Probability Letters, Elsevier, vol. 184(C).
    5. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Zhang, Yaowu & Zhou, Yeqing & Zhu, Liping, 2024. "A post-screening diagnostic study for ultrahigh dimensional data," Journal of Econometrics, Elsevier, vol. 239(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    2. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    3. Benjamin Poignard & Manabu Asai, 2023. "Estimation of high-dimensional vector autoregression via sparse precision matrix," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 307-326.
    4. Ziqi Chen & Chenlei Leng, 2016. "Dynamic Covariance Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1196-1207, July.
    5. Yang, Yihe & Dai, Hongsheng & Pan, Jianxin, 2023. "Block-diagonal precision matrix regularization for ultra-high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    6. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    7. Liang, Wanfeng & Ma, Xiaoyan, 2024. "A new approach for ultrahigh-dimensional covariance matrix estimation," Statistics & Probability Letters, Elsevier, vol. 204(C).
    8. Guanghui Cheng & Zhengjun Zhang & Baoxue Zhang, 2017. "Test for bandedness of high-dimensional precision matrices," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 884-902, October.
    9. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    10. Kang, Xiaoning & Wang, Mingqiu, 2021. "Ensemble sparse estimation of covariance structure for exploring genetic disease data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    11. Chen, Shuo & Kang, Jian & Xing, Yishi & Zhao, Yunpeng & Milton, Donald K., 2018. "Estimating large covariance matrix with network topology for high-dimensional biomedical data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 82-95.
    12. Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2021. "Estimation and optimal structure selection of high-dimensional Toeplitz covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    13. Yumou Qiu & Song Xi Chen, 2015. "Bandwidth Selection for High-Dimensional Covariance Matrix Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1160-1174, September.
    14. Liu, Weidong & Luo, Xi, 2015. "Fast and adaptive sparse precision matrix estimation in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 153-162.
    15. Banerjee, Sayantan & Ghosal, Subhashis, 2015. "Bayesian structure learning in graphical models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 147-162.
    16. Yin, Jianxin & Li, Hongzhe, 2012. "Model selection and estimation in the matrix normal graphical model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 119-140.
    17. Li, Peili & Xiao, Yunhai, 2018. "An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 292-307.
    18. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    19. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    20. Xi Luo, 2011. "Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation," Papers 1111.1133, arXiv.org, revised Mar 2013.

    More about this item

    Keywords

    Covariance matrix estimation; Precision matrix; Refitted cross validation; Sample splitting; Spurious correlation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:215:y:2020:i:1:p:118-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.