IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v122y2017icp96-103.html
   My bibliography  Save this article

Individual-specific, sparse inverse covariance estimation in generalized estimating equations

Author

Listed:
  • Zhang, Qiang
  • Ip, Edward H.
  • Pan, Junhao
  • Plemmons, Robert

Abstract

This paper proposes a data-driven approach that derives individual-specific sparse working correlation matrices for generalized estimating equations (GEEs). The approach is motivated by the observation that, in some applications of the GEE, the covariance structure across individuals is heterogeneous and cannot be appropriately captured by a single correlation matrix. The proposed approach enjoys both favorable computational and asymptotic properties. Simulation experiments and analysis of intensively measured longitudinal data on 158 participants collected from a dietary and emotion study are presented.

Suggested Citation

  • Zhang, Qiang & Ip, Edward H. & Pan, Junhao & Plemmons, Robert, 2017. "Individual-specific, sparse inverse covariance estimation in generalized estimating equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 96-103.
  • Handle: RePEc:eee:stapro:v:122:y:2017:i:c:p:96-103
    DOI: 10.1016/j.spl.2016.10.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215304338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.10.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. You-Gan Wang, 2003. "Working correlation structure misspecification, estimation and covariate design: Implications for generalised estimating equations performance," Biometrika, Biometrika Trust, vol. 90(1), pages 29-41, March.
    2. You-Gan Wang & Vincent J. Carey, 2004. "Unbiased Estimating Equations From Working Correlation Models for Irregularly Timed Repeated Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 845-853, January.
    3. Blommaert, A. & Hens, N. & Beutels, Ph., 2014. "Data mining for longitudinal data under multicollinearity and time dependence using penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 667-680.
    4. Sutradhar, Brajendra C. & Kumar, Pranesh, 2001. "On the efficiency of extended generalized estimating equation approaches," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 53-61, November.
    5. Huajun Ye & Jianxin Pan, 2006. "Modelling of covariance structures in generalised estimating equations for longitudinal data," Biometrika, Biometrika Trust, vol. 93(4), pages 927-941, December.
    6. Teng Zhang & Hui Zou, 2014. "Sparse precision matrix estimation via lasso penalized D-trace loss," Biometrika, Biometrika Trust, vol. 101(1), pages 103-120.
    7. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
    8. Sugata Sen Roy & Sankha Bhattacharya, 2013. "Rate of convergence in the central limit theorem for parameter estimation in a causal, invertible ARMA(p, q) model," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 130-137, January.
    9. Ratcliffe, Sarah J. & Shults, Justine, 2008. "GEEQBOX: A MATLAB Toolbox for Generalized Estimating Equations and Quasi-Least Squares," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i14).
    10. Wang, You-Gan & Hin, Lin-Yee, 2010. "Modeling strategies in longitudinal data analysis: Covariate, variance function and correlation structure selection," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3359-3370, December.
    11. Kauermann G. & Carroll R.J., 2001. "A Note on the Efficiency of Sandwich Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1387-1396, December.
    12. Jianhua Z. Huang & Naiping Liu & Mohsen Pourahmadi & Linxu Liu, 2006. "Covariance matrix selection and estimation via penalised normal likelihood," Biometrika, Biometrika Trust, vol. 93(1), pages 85-98, March.
    13. Wei Biao Wu, 2003. "Nonparametric estimation of large covariance matrices of longitudinal data," Biometrika, Biometrika Trust, vol. 90(4), pages 831-844, December.
    14. Wenjiang J. Fu, 2003. "Penalized Estimating Equations," Biometrics, The International Biometric Society, vol. 59(1), pages 126-132, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Poignard & Manabu Asai, 2023. "Estimation of high-dimensional vector autoregression via sparse precision matrix," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 307-326.
    2. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    3. Liya Fu & Yangyang Hao & You-Gan Wang, 2018. "Working correlation structure selection in generalized estimating equations," Computational Statistics, Springer, vol. 33(2), pages 983-996, June.
    4. Guney, Yesim & Arslan, Olcay & Yavuz, Fulya Gokalp, 2022. "Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    5. Cheng, Guang & Yu, Zhuqing & Huang, Jianhua Z., 2013. "The cluster bootstrap consistency in generalized estimating equations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 33-47.
    6. Sung, Bongjung & Lee, Jaeyong, 2023. "Covariance structure estimation with Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    7. Yumou Qiu & Song Xi Chen, 2015. "Bandwidth Selection for High-Dimensional Covariance Matrix Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1160-1174, September.
    8. Xu, Jianwen & Wang, You-Gan, 2014. "Intra-cluster correlation structure in longitudinal data analysis: Selection criteria and misspecification tests," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 70-77.
    9. Abadir, Karim M. & Distaso, Walter & Žikeš, Filip, 2014. "Design-free estimation of variance matrices," Journal of Econometrics, Elsevier, vol. 181(2), pages 165-180.
    10. Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    11. Xi Luo, 2011. "Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation," Papers 1111.1133, arXiv.org, revised Mar 2013.
    12. Chen, Ziqi & Shi, Ning-Zhong & Gao, Wei & Tang, Man-Lai, 2011. "Efficient semiparametric estimation via Cholesky decomposition for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3344-3354, December.
    13. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    14. Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
    15. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    16. Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
    17. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    18. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    19. Wang, Luheng & Chen, Zhao & Wang, Christina Dan & Li, Runze, 2020. "Ultrahigh dimensional precision matrix estimation via refitted cross validation," Journal of Econometrics, Elsevier, vol. 215(1), pages 118-130.
    20. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:122:y:2017:i:c:p:96-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.