IDEAS home Printed from https://ideas.repec.org/r/inm/ormksc/v23y2004i3p280-303.html
   My bibliography  Save this item

Modeling Browsing Behavior at Multiple Websites

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Makoto Abe, 2006. ""Counting Your Customers" One by One: An Individual Level RF Analysis Based on Consumer Behavior Theory," CIRJE F-Series CIRJE-F-408, CIRJE, Faculty of Economics, University of Tokyo.
  2. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
  3. Lesley Chiou & Catherine Tucker, 2012. "How Does the Use of Trademarks by Third-Party Sellers Affect Online Search?," Marketing Science, INFORMS, vol. 31(5), pages 819-837, September.
  4. Amy Wenxuan Ding & Shibo Li & Patrali Chatterjee, 2015. "Learning User Real-Time Intent for Optimal Dynamic Web Page Transformation," Information Systems Research, INFORMS, vol. 26(2), pages 339-359, June.
  5. Vinit Kumar Mishra & Karthik Natarajan & Dhanesh Padmanabhan & Chung-Piaw Teo & Xiaobo Li, 2014. "On Theoretical and Empirical Aspects of Marginal Distribution Choice Models," Management Science, INFORMS, vol. 60(6), pages 1511-1531, June.
  6. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
  7. Nico Neumann & Catherine E. Tucker & Timothy Whitfield, 2019. "Frontiers: How Effective Is Third-Party Consumer Profiling? Evidence from Field Studies," Marketing Science, INFORMS, vol. 38(6), pages 918-926, November.
  8. Lim, Hyungsoo & Kim, Chul & Kannan, P.K., 2024. "Unveiling the web of interactions: Analyzing dynamic customer engagements across multiple websites," Journal of Business Research, Elsevier, vol. 183(C).
  9. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
  10. Sarkar, Mainak & De Bruyn, Arnaud, 2021. "LSTM Response Models for Direct Marketing Analytics: Replacing Feature Engineering with Deep Learning," Journal of Interactive Marketing, Elsevier, vol. 53(C), pages 80-95.
  11. Goic, Marcel & Rojas, Andrea & Saavedra, Ignacio, 2021. "The Effectiveness of Triggered Email Marketing in Addressing Browse Abandonments," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 118-145.
  12. Yang Qian & Yuanchun Jiang & Yanan Du & Jianshan Sun & Yezheng Liu, 2020. "Segmenting market structure from multi-channel clickstream data: a novel generative model," Electronic Commerce Research, Springer, vol. 20(3), pages 509-533, September.
  13. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
  14. Sahar Karimi, 2021. "Cross-visiting Behaviour of Online Consumers Across Retailers’ and Comparison Sites, a Macro-Study," Information Systems Frontiers, Springer, vol. 23(3), pages 531-542, June.
  15. Peter J. Danaher, 2007. "Modeling Page Views Across Multiple Websites with an Application to Internet Reach and Frequency Prediction," Marketing Science, INFORMS, vol. 26(3), pages 422-437, 05-06.
  16. Sam K. Hui & Peter S. Fader & Eric T. Bradlow, 2009. "Path Data in Marketing: An Integrative Framework and Prospectus for Model Building," Marketing Science, INFORMS, vol. 28(2), pages 320-335, 03-04.
  17. Barry L. Bayus, 2013. "Crowdsourcing New Product Ideas over Time: An Analysis of the Dell IdeaStorm Community," Management Science, INFORMS, vol. 59(1), pages 226-244, June.
  18. J. Burez & D. Van Den Poel, 2008. "Handling class imbalance in customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/517, Ghent University, Faculty of Economics and Business Administration.
  19. Meihua Zuo & Spyros Angelopoulos & Zhouyang Liang & Carol X. J. Ou, 2023. "Blazing the Trail: Considering Browsing Path Dependence in Online Service Response Strategy," Information Systems Frontiers, Springer, vol. 25(4), pages 1605-1619, August.
  20. Y. Samimi & A. Aghaie, 2010. "Monitoring heterogeneous serially correlated usage behavior in subscription-based services," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(10), pages 1761-1777.
  21. Yan Dong & Yuliang Yao & Tony Haitao Cui, 2011. "When Acquisition Spoils Retention: Direct Selling vs. Delegation Under CRM," Management Science, INFORMS, vol. 57(7), pages 1288-1299, July.
  22. Brian C Gunia & J Keith Murnighan, 2015. "The Tell-Tale Look: Viewing Time, Preferences, and Prices," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-26, January.
  23. Patrick Mair & Marcus Hudec, 2009. "Multivariate Weibull mixtures with proportional hazard restrictions for dwell‐time‐based session clustering with incomplete data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 619-639, December.
  24. Roland T. Rust & Ming-Hui Huang, 2014. "The Service Revolution and the Transformation of Marketing Science," Marketing Science, INFORMS, vol. 33(2), pages 206-221, March.
  25. Dmitri Kuksov, 2004. "Buyer Search Costs and Endogenous Product Design," Marketing Science, INFORMS, vol. 23(4), pages 490-499, May.
  26. David A. Schweidel & Peter S. Fader & Eric T. Bradlow, 2008. "A Bivariate Timing Model of Customer Acquisition and Retention," Marketing Science, INFORMS, vol. 27(5), pages 829-843, 09-10.
  27. Zhiqiang (Eric) Zheng & Peter Fader & Balaji Padmanabhan, 2012. "From Business Intelligence to Competitive Intelligence: Inferring Competitive Measures Using Augmented Site-Centric Data," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 698-720, September.
  28. Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.
  29. David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.
  30. Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
  31. G. Verstraeten & D. Van Den Poel, 2006. "Using Predicted Outcome Stratified Sampling to Reduce the Variability in Predictive Performance of a One-Shot Train-and-Test Split for Individual Customer Predictions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/360, Ghent University, Faculty of Economics and Business Administration.
  32. Makoto Abe, 2009. "“Counting Your Customers” One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 28(3), pages 541-553, 05-06.
  33. Peter J. Danaher & Janghyuk Lee & Laoucine Kerbache, 2010. "Optimal Internet Media Selection," Marketing Science, INFORMS, vol. 29(2), pages 336-347, 03-04.
  34. LEE, Janghyuk & KERBACHE, Laoucine, 2004. "Internet media planning : an optimization model," HEC Research Papers Series 806, HEC Paris.
  35. Bart J. Bronnenberg & Jun B. Kim & Carl F. Mela, 2016. "Zooming In on Choice: How Do Consumers Search for Cameras Online?," Marketing Science, INFORMS, vol. 35(5), pages 693-712, September.
  36. Michael Trusov & Liye Ma & Zainab Jamal, 2016. "Crumbs of the Cookie: User Profiling in Customer-Base Analysis and Behavioral Targeting," Marketing Science, INFORMS, vol. 35(3), pages 405-426, May.
  37. Dina Mayzlin, 2006. "Promotional Chat on the Internet," Marketing Science, INFORMS, vol. 25(2), pages 155-163, 03-04.
  38. Zhiqiang Zheng & Balaji Padmanabhan, 2006. "Selectively Acquiring Customer Information: A New Data Acquisition Problem and an Active Learning-Based Solution," Management Science, INFORMS, vol. 52(5), pages 697-712, May.
  39. Damangir, Sina & Du, Rex Yuxing & Hu, Ye, 2018. "Uncovering Patterns of Product Co-consideration: A Case Study of Online Vehicle Price Quote Request Data," Journal of Interactive Marketing, Elsevier, vol. 42(C), pages 1-17.
  40. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
  41. Amit Bhatnagar & Arun Sen & Atish P. Sinha, 2017. "Providing a Window of Opportunity for Converting eStore Visitors," Information Systems Research, INFORMS, vol. 28(1), pages 22-32, March.
  42. Zhao, Lan & Nagurney, Anna, 2008. "A network equilibrium framework for Internet advertising: Models, qualitative analysis, and algorithms," European Journal of Operational Research, Elsevier, vol. 187(2), pages 456-472, June.
  43. BALAGUE, Christine & LEE, Janghyuk, 2004. "Dynamic modeling of web purchase behavior and e-mailing impact by Petri net," HEC Research Papers Series 804, HEC Paris.
  44. V Kumar & Amalesh Sharma & Shaphali Gupta, 2017. "Accessing the influence of strategic marketing research on generating impact: moderating roles of models, journals, and estimation approaches," Journal of the Academy of Marketing Science, Springer, vol. 45(2), pages 164-185, March.
  45. Teck-Hua Ho & Young-Hoon Park & Yong-Pin Zhou, 2006. "Incorporating Satisfaction into Customer Value Analysis: Optimal Investment in Lifetime Value," Marketing Science, INFORMS, vol. 25(3), pages 260-277, 05-06.
  46. Sam K. Hui & Jehoshua Eliashberg & Edward I. George, 2008. "Modeling DVD Preorder and Sales: An Optimal Stopping Approach," Marketing Science, INFORMS, vol. 27(6), pages 1097-1110, 11-12.
  47. Eugenio J. Miravete, 2009. "Competing with Menus of Tariff Options," Journal of the European Economic Association, MIT Press, vol. 7(1), pages 188-205, March.
  48. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
  49. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
  50. Schröder, Nadine & Falke, Andreas & Hruschka, Harald & Reutterer, Thomas, 2019. "Analyzing the Browsing Basket: A Latent Interests-Based Segmentation Tool," Journal of Interactive Marketing, Elsevier, vol. 47(C), pages 181-197.
  51. Jura Liaukonyte & Thales Teixeira & Kenneth C. Wilbur, 2015. "Television Advertising and Online Shopping," Marketing Science, INFORMS, vol. 34(3), pages 311-330, May.
  52. Park, Chang Hee, 2017. "Online Purchase Paths and Conversion Dynamics across Multiple Websites," Journal of Retailing, Elsevier, vol. 93(3), pages 253-265.
  53. Makoto Abe, 2008. ""Counting Your Customers" One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," CIRJE F-Series CIRJE-F-537, CIRJE, Faculty of Economics, University of Tokyo.
  54. Nico Neumann & Catherine E. Tucker & Kumar Subramanyam & John Marshall, 2023. "Is first- or third-party audience data more effective for reaching the ‘right’ customers? The case of IT decision-makers," Quantitative Marketing and Economics (QME), Springer, vol. 21(4), pages 519-571, December.
  55. Emilio Gómez-Déniz & Jorge Pérez-Rodríguez, 2015. "Closed-form solution for a bivariate distribution in stochastic frontier models with dependent errors," Journal of Productivity Analysis, Springer, vol. 43(2), pages 215-223, April.
  56. Jiang, Qiqi & Tan, Chuan-Hoo & Phang, Chee Wei & Sutanto, Juliana & Wei, Kwok-Kee, 2013. "Understanding Chinese online users and their visits to websites: Application of Zipf's law," International Journal of Information Management, Elsevier, vol. 33(5), pages 752-763.
  57. Bressolles, Grégory & Durrieu, François & Senecal, Sylvain, 2014. "A consumer typology based on e-service quality and e-satisfaction," Journal of Retailing and Consumer Services, Elsevier, vol. 21(6), pages 889-896.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.