Handling class imbalance in customer churn prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- B. Larivière & D. Van Den Poel, 2004. "Predicting Customer Retention and Profitability by Using Random Forests and Regression Forests Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/282, Ghent University, Faculty of Economics and Business Administration.
- B. Larivière & D. Van Den Poel, 2004. "Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: The case of financial services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/223, Ghent University, Faculty of Economics and Business Administration.
- Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
- G. Verstraeten & D. Van Den Poel, 2006. "Using Predicted Outcome Stratified Sampling to Reduce the Variability in Predictive Performance of a One-Shot Train-and-Test Split for Individual Customer Predictions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/360, Ghent University, Faculty of Economics and Business Administration.
- Joffre Swait & Rick L. Andrews, 2003. "Enriching Scanner Panel Models with Choice Experiments," Marketing Science, INFORMS, vol. 22(4), pages 442-460, September.
- A. Prinzie & D. Van Den Poel, 2007. "Random Forrests for Multiclass classification: Random Multinomial Logit," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/435, Ghent University, Faculty of Economics and Business Administration.
- Young-Hoon Park & Peter S. Fader, 2004. "Modeling Browsing Behavior at Multiple Websites," Marketing Science, INFORMS, vol. 23(3), pages 280-303, May.
- Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
- Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009.
"Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models,"
Working Papers
2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
- K. Coussement & D.F. Benoît & D. van den Poel, 2010. "Improved marketing decision making in a customer churn prediction context using generalized additive models," Post-Print halshs-00581701, HAL.
- K. Coussement & D. F. Benoit & D. Van Den Poel, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/603, Ghent University, Faculty of Economics and Business Administration.
- T Bellotti & J Crook, 2009. "Credit scoring with macroeconomic variables using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1699-1707, December.
- K. Coussement & D. Van Den Poel, 2008.
"Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
08/527, Ghent University, Faculty of Economics and Business Administration.
- K. Coussement & D. van den Poel, 2009. "Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers," Post-Print halshs-00581595, HAL.
- V. L. Miguéis & D. Van Den Poel & A.S. Camanho & J. Falcao E Cunha, 2012. "Modeling Partial Customer Churn: On the Value of First Product-Category Purchase Sequences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/790, Ghent University, Faculty of Economics and Business Administration.
- Guven, Faruk, 2018. "Churn and loyalty behaviour of Turkish digital natives," 29th European Regional ITS Conference, Trento 2018 184943, International Telecommunications Society (ITS).
- K. W. De Bock & D. Van Den Poel, 2011.
"An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
11/717, Ghent University, Faculty of Economics and Business Administration.
- K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- K. Coussement & D. Van Den Poel, 2008.
"Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
08/527, Ghent University, Faculty of Economics and Business Administration.
- K. Coussement & D. van den Poel, 2009. "Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers," Post-Print halshs-00581595, HAL.
- J. Burez & D. Van Den Poel, 2005. "CRM at a Pay-TV Company: Using Analytical Models to Reduce Customer Attrition by Targeted Marketing for Subscription Services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/348, Ghent University, Faculty of Economics and Business Administration.
- G. Verstraeten & D. Van Den Poel, 2006. "Using Predicted Outcome Stratified Sampling to Reduce the Variability in Predictive Performance of a One-Shot Train-and-Test Split for Individual Customer Predictions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/360, Ghent University, Faculty of Economics and Business Administration.
- Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
- K. W. De Bock & D. Van Den Poel, 2011.
"An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
11/717, Ghent University, Faculty of Economics and Business Administration.
- K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
- Sahar Karimi, 2021. "Cross-visiting Behaviour of Online Consumers Across Retailers’ and Comparison Sites, a Macro-Study," Information Systems Frontiers, Springer, vol. 23(3), pages 531-542, June.
- B. Larivière & D. Van Den Poel, 2004. "Predicting Customer Retention and Profitability by Using Random Forests and Regression Forests Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/282, Ghent University, Faculty of Economics and Business Administration.
- Jura Liaukonyte & Thales Teixeira & Kenneth C. Wilbur, 2015. "Television Advertising and Online Shopping," Marketing Science, INFORMS, vol. 34(3), pages 311-330, May.
- Schröder, Nadine & Falke, Andreas & Hruschka, Harald & Reutterer, Thomas, 2019. "Analyzing the Browsing Basket: A Latent Interests-Based Segmentation Tool," Journal of Interactive Marketing, Elsevier, vol. 47(C), pages 181-197.
- D. F. Benoit & D. Van Den Poel, 2012. "Improving Customer Retention In Financial Services Using Kinship Network Information," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/786, Ghent University, Faculty of Economics and Business Administration.
- Lim, Hyungsoo & Kim, Chul & Kannan, P.K., 2024. "Unveiling the web of interactions: Analyzing dynamic customer engagements across multiple websites," Journal of Business Research, Elsevier, vol. 183(C).
- M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
- M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
- Patrick Mair & Marcus Hudec, 2009. "Multivariate Weibull mixtures with proportional hazard restrictions for dwell‐time‐based session clustering with incomplete data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 619-639, December.
- Amy Wenxuan Ding & Shibo Li & Patrali Chatterjee, 2015. "Learning User Real-Time Intent for Optimal Dynamic Web Page Transformation," Information Systems Research, INFORMS, vol. 26(2), pages 339-359, June.
- Park, Chang Hee, 2017. "Online Purchase Paths and Conversion Dynamics across Multiple Websites," Journal of Retailing, Elsevier, vol. 93(3), pages 253-265.
- Sam K. Hui & Peter S. Fader & Eric T. Bradlow, 2009. "Path Data in Marketing: An Integrative Framework and Prospectus for Model Building," Marketing Science, INFORMS, vol. 28(2), pages 320-335, 03-04.
- Koen Pauwels, 2004. "How Dynamic Consumer Response, Competitor Response, Company Support, and Company Inertia Shape Long-Term Marketing Effectiveness," Marketing Science, INFORMS, vol. 23(4), pages 596-610, June.
- Amit Bhatnagar & Arun Sen & Atish P. Sinha, 2017. "Providing a Window of Opportunity for Converting eStore Visitors," Information Systems Research, INFORMS, vol. 28(1), pages 22-32, March.
- Babur De los Santos & Sergei Koulayev, 2017. "Optimizing Click-Through in Online Rankings with Endogenous Search Refinement," Marketing Science, INFORMS, vol. 36(4), pages 542-564, July.
More about this item
Keywords
rare events; class imbalance; undersampling; oversampling; boosting; random forests; CUBE; customer churn; classifier;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2008-06-27 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:08/517. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nathalie Verhaeghe (email available below). General contact details of provider: https://edirc.repec.org/data/ferugbe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.