IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v28y2009i3p541-553.html
   My bibliography  Save this article

“Counting Your Customers” One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model

Author

Listed:
  • Makoto Abe

    (Graduate School of Economics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan)

Abstract

This research extends a Pareto/NBD model of customer-base analysis using a hierarchical Bayesian (HB) framework to suit today's customized marketing. The proposed HB model presumes three tried and tested assumptions of Pareto/NBD models: (1) a Poisson purchase process, (2) a memoryless dropout process (i.e., constant hazard rate), and (3) heterogeneity across customers, while relaxing the independence assumption of the purchase and dropout rates and incorporating customer characteristics as covariates. The model also provides useful output for CRM, such as a customer-specific lifetime and survival rate, as by-products of the MCMC estimation. Using three different types of databases—music CD for e-commerce, FSP data for a department store and a music CD chain, the HB model is compared against the benchmark Pareto/NBD model. The study demonstrates that recency-frequency data, in conjunction with customer behavior and characteristics, can provide important insights into direct marketing issues, such as the demographic profile of best customers and whether long-life customers spend more.

Suggested Citation

  • Makoto Abe, 2009. "“Counting Your Customers” One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 28(3), pages 541-553, 05-06.
  • Handle: RePEc:inm:ormksc:v:28:y:2009:i:3:p:541-553
    DOI: 10.1287/mksc.1090.0502
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1090.0502
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1090.0502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Young-Hoon Park & Peter S. Fader, 2004. "Modeling Browsing Behavior at Multiple Websites," Marketing Science, INFORMS, vol. 23(3), pages 280-303, May.
    2. Füsun F. Gönül & Frenkel Ter Hofstede, 2006. "How to Compute Optimal Catalog Mailing Decisions," Marketing Science, INFORMS, vol. 25(1), pages 65-74, 01-02.
    3. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    4. Makoto Abe, 2009. "Customer Lifetime Value and RFM Data: Accounting Your Customers: One by One," CIRJE F-Series CIRJE-F-616, CIRJE, Faculty of Economics, University of Tokyo.
    5. Baohong Sun, 2006. "—Technology Innovation and Implications for Customer Relationship Management," Marketing Science, INFORMS, vol. 25(6), pages 594-597, 11-12.
    6. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    7. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    8. David C. Schmittlein & Robert A. Peterson, 1994. "Customer Base Analysis: An Industrial Purchase Process Application," Marketing Science, INFORMS, vol. 13(1), pages 41-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    2. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
    3. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    4. Makoto Abe, 2008. ""Counting Your Customers" One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," CIRJE F-Series CIRJE-F-537, CIRJE, Faculty of Economics, University of Tokyo.
    5. Teck-Hua Ho & Young-Hoon Park & Yong-Pin Zhou, 2006. "Incorporating Satisfaction into Customer Value Analysis: Optimal Investment in Lifetime Value," Marketing Science, INFORMS, vol. 25(3), pages 260-277, 05-06.
    6. Jerath, Kinshuk & Fader, Peter S. & Hardie, Bruce G.S., 2016. "Customer-base analysis using repeated cross-sectional summary (RCSS) data," European Journal of Operational Research, Elsevier, vol. 249(1), pages 340-350.
    7. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    8. Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
    9. Andrés Musalem & Yogesh V. Joshi, 2009. "—How Much Should You Invest in Each Customer Relationship? A Competitive Strategic Approach," Marketing Science, INFORMS, vol. 28(3), pages 555-565, 05-06.
    10. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    11. Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.
    12. Hoppe, Daniel & Wagner, Udo, 2014. "The role of lifetime activity cues in customer base analysis," Journal of Business Research, Elsevier, vol. 67(5), pages 983-989.
    13. Roland T. Rust & Ming-Hui Huang, 2014. "The Service Revolution and the Transformation of Marketing Science," Marketing Science, INFORMS, vol. 33(2), pages 206-221, March.
    14. Clemente-Císcar, M. & San Matías, S. & Giner-Bosch, V., 2014. "A methodology based on profitability criteria for defining the partial defection of customers in non-contractual settings," European Journal of Operational Research, Elsevier, vol. 239(1), pages 276-285.
    15. Shaohui Ma & Joachim Büschken, 2011. "Counting your customers from an “always a share” perspective," Marketing Letters, Springer, vol. 22(3), pages 243-257, September.
    16. Makoto Abe, 2006. ""Counting Your Customers" One by One: An Individual Level RF Analysis Based on Consumer Behavior Theory," CIRJE F-Series CIRJE-F-408, CIRJE, Faculty of Economics, University of Tokyo.
    17. Sharad Borle & Siddharth S. Singh & Dipak C. Jain, 2008. "Customer Lifetime Value Measurement," Management Science, INFORMS, vol. 54(1), pages 100-112, January.
    18. Fader, Peter S. & Hardie, Bruce G.S., 2009. "Probability Models for Customer-Base Analysis," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 61-69.
    19. Singh, Shweta & Murthi, B.P.S. & Steffes, Erin, 2013. "Developing a measure of risk adjusted revenue (RAR) in credit cards market: Implications for customer relationship management," European Journal of Operational Research, Elsevier, vol. 224(2), pages 425-434.
    20. van Oest, Rutger & Knox, George, 2011. "Extending the BG/NBD: A simple model of purchases and complaints," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 30-37.
    21. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:28:y:2009:i:3:p:541-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.