IDEAS home Printed from https://ideas.repec.org/a/eee/joinma/v42y2018icp1-17.html
   My bibliography  Save this article

Uncovering Patterns of Product Co-consideration: A Case Study of Online Vehicle Price Quote Request Data

Author

Listed:
  • Damangir, Sina
  • Du, Rex Yuxing
  • Hu, Ye

Abstract

Consumers often consider multiple alternatives from the same product category prior to making a purchase. Uncovering the predominant patterns of such co-considerations can help businesses learn more about the competitive structure of the market in the mind of the consumer. Extant research has shown that various types of online and offline consumer activity data (e.g., shopping baskets, search and browsing histories, social media mentions) can be used to infer product co-considerations. In this paper, we study a case of uncovering co-consideration patterns using a massive dataset of online price quote requests from U.S. auto shoppers. The main challenge we face is that, for privacy protection, no unique individual identifier (anonymous or otherwise) is contained in the data. Such a data deficiency prevents us from using existing methods such as affinity analysis for inferring co-considerations. However, by leveraging spatiotemporal patterns in the data, we manage to probabilistically uncover the predominant patterns of co-considerations in the U.S. auto market. As a validation and illustration of its usefulness, we embed the inferred market structure in a sales response model and show a substantial improvement in predictive performance.

Suggested Citation

  • Damangir, Sina & Du, Rex Yuxing & Hu, Ye, 2018. "Uncovering Patterns of Product Co-consideration: A Case Study of Online Vehicle Price Quote Request Data," Journal of Interactive Marketing, Elsevier, vol. 42(C), pages 1-17.
  • Handle: RePEc:eee:joinma:v:42:y:2018:i:c:p:1-17
    DOI: 10.1016/j.intmar.2017.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1094996817300750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intmar.2017.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Besanko & Jean-Pierre Dubé & Sachin Gupta, 2003. "Competitive Price Discrimination Strategies in a Vertical Channel Using Aggregate Retail Data," Management Science, INFORMS, vol. 49(9), pages 1121-1138, September.
    2. S. Chan Choi, 1991. "Price Competition in a Channel Structure with a Common Retailer," Marketing Science, INFORMS, vol. 10(4), pages 271-296.
    3. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    4. Zhiqiang (Eric) Zheng & Peter Fader & Balaji Padmanabhan, 2012. "From Business Intelligence to Competitive Intelligence: Inferring Competitive Measures Using Augmented Site-Centric Data," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 698-720, September.
    5. Steven M. Shugan, 2014. "Market Structure Research," World Scientific Book Chapters, in: Russell S Winer & Scott A Neslin (ed.), THE HISTORY OF MARKETING SCIENCE, chapter 6, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    6. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    7. Rajiv Grover & William R. Dillon, 1985. "A Probabilistic Model For Testing Hypothesized Hierarchical Market Structures," Marketing Science, INFORMS, vol. 4(4), pages 312-335.
    8. J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
    9. Young-Hoon Park & Peter S. Fader, 2004. "Modeling Browsing Behavior at Multiple Websites," Marketing Science, INFORMS, vol. 23(3), pages 280-303, May.
    10. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    11. Glen L. Urban & Philip L. Johnson & John R. Hauser, 1984. "Testing Competitive Market Structures," Marketing Science, INFORMS, vol. 3(2), pages 83-112.
    12. Syam Menon & Sumit Sarkar & Shibnath Mukherjee, 2005. "Maximizing Accuracy of Shared Databases when Concealing Sensitive Patterns," Information Systems Research, INFORMS, vol. 16(3), pages 256-270, September.
    13. Gardial, Sarah Fisher, et al, 1994. "Comparing Consumers' Recall of Prepurchase and Postpurchase Product Evaluation Experiences," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 20(4), pages 548-560, March.
    14. Xiao-Bai Li & Sumit Sarkar, 2011. "Protecting Privacy Against Record Linkage Disclosure: A Bounded Swapping Approach for Numeric Data," Information Systems Research, INFORMS, vol. 22(4), pages 774-789, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian, Yang & Ling, Haifeng & Meng, Xiangrui & Jiang, Yuanchun & Chai, Yidong & Liu, Yezheng, 2024. "Voice of the Professional: Acquiring competitive intelligence from large-scale professional generated contents," Journal of Business Research, Elsevier, vol. 180(C).
    2. Yang Qian & Yuanchun Jiang & Yanan Du & Jianshan Sun & Yezheng Liu, 2020. "Segmenting market structure from multi-channel clickstream data: a novel generative model," Electronic Commerce Research, Springer, vol. 20(3), pages 509-533, September.
    3. Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Shang, Jennifer, 2020. "Using favorite data to analyze asymmetric competition: Machine learning models," European Journal of Operational Research, Elsevier, vol. 287(2), pages 600-615.
    4. Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Qian & Yuanchun Jiang & Yanan Du & Jianshan Sun & Yezheng Liu, 2020. "Segmenting market structure from multi-channel clickstream data: a novel generative model," Electronic Commerce Research, Springer, vol. 20(3), pages 509-533, September.
    2. Maximilian Matthe & Daniel M. Ringel & Bernd Skiera, 2023. "Mapping Market Structure Evolution," Marketing Science, INFORMS, vol. 42(3), pages 589-613, May.
    3. Saridakis, Charalampos & Katsikeas, Constantine S. & Angelidou, Sofia & Oikonomidou, Maria & Pratikakis, Polyvios, 2023. "Mining Twitter lists to extract brand-related associative information for celebrity endorsement," European Journal of Operational Research, Elsevier, vol. 311(1), pages 316-332.
    4. Qian, Yang & Ling, Haifeng & Meng, Xiangrui & Jiang, Yuanchun & Chai, Yidong & Liu, Yezheng, 2024. "Voice of the Professional: Acquiring competitive intelligence from large-scale professional generated contents," Journal of Business Research, Elsevier, vol. 180(C).
    5. Zhou, Meihua & Angelopoulos, Spyros & Ou, Carol & Liu, Hongwei & Liang, Zhouyang, 2023. "Optimization of dynamic product offerings on online marketplaces: A network theory perspective," Other publications TiSEM 75d71155-88bf-4ff7-aba1-9, Tilburg University, School of Economics and Management.
    6. Alzate, Miriam & Arce-Urriza, Marta & Cebollada, Javier, 2022. "Mining the text of online consumer reviews to analyze brand image and brand positioning," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    7. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    8. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    9. Balázs Kovács, 2024. "The Turing test of online reviews: Can we tell the difference between human-written and GPT-4-written online reviews?," Marketing Letters, Springer, vol. 35(4), pages 651-666, December.
    10. Chan, Tat Y. & Narasimhan, Chakravarthi & Yoon, Yeujun, 2017. "Advertising and price competition in a manufacturer-retailer channel," International Journal of Research in Marketing, Elsevier, vol. 34(3), pages 694-716.
    11. Xuan Gong & Yunchan Zhu & Rizwan Ali & Ruijin Guo, 2019. "Capturing Associations and Sustainable Competitiveness of Brands from Social Tags," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    12. Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
    13. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    14. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    15. Ishita Chakraborty & Minkyung Kim & K. Sudhir, 2019. "Attribute Sentiment Scoring With Online Text Reviews : Accounting for Language Structure and Attribute Self-Selection," Cowles Foundation Discussion Papers 2176R, Cowles Foundation for Research in Economics, Yale University, revised Sep 2020.
    16. Moutaz Khouja & Jing Zhou, 2016. "The effect of a temporary product distribution channel on supply chain performance," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(7), pages 505-528, October.
    17. Young Kwark & Jianqing Chen & Srinivasan Raghunathan, 2014. "Online Product Reviews: Implications for Retailers and Competing Manufacturers," Information Systems Research, INFORMS, vol. 25(1), pages 93-110, March.
    18. Krafft, Manfred & Goetz, Oliver & Mantrala, Murali & Sotgiu, Francesca & Tillmanns, Sebastian, 2015. "The Evolution of Marketing Channel Research Domains and Methodologies: An Integrative Review and Future Directions," Journal of Retailing, Elsevier, vol. 91(4), pages 569-585.
    19. Adam N. Smith & Jim E. Griffin, 2023. "Shrinkage priors for high-dimensional demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 21(1), pages 95-146, March.
    20. Ling Peng & Geng Cui & Yuho Chung & Chunyu Li, 2019. "A multi-facet item response theory approach to improve customer satisfaction using online product ratings," Journal of the Academy of Marketing Science, Springer, vol. 47(5), pages 960-976, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joinma:v:42:y:2018:i:c:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-interactive-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.