IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2006cf408.html
   My bibliography  Save this paper

"Counting Your Customers" One by One: An Individual Level RF Analysis Based on Consumer Behavior Theory

Author

Listed:
  • Makoto Abe

    (Faculty of Economics, University of Tokyo)

Abstract

In customer relationship management (CRM), ad hoc rules are often employed to judge whether customers are active in a "non-contractual" setting. For example, a customer is considered to have dropped out if he or she has not made purchase for over three months. However, for customers with a long interpurchase time, this three-month time frame would not apply. Hence, when assessing customer attrition, it is important to account for customer heterogeneity. Although this issue was recognized by Schmittlein et al. (1987), who proposed the Pareto/NBD "counting your customers" framework almost 20 years ago, today's marketing demands a more individual level analysis. This research presents a proposed model that captures customer heterogeneity through estimation of individual-specific parameters, while maintaining theoretically sound assumptions of individual behavior in a Pareto/NBD model (a Poisson purchase process and a memoryless dropout process). The model not only relaxes the assumption of independence of the two behavioral processes, it also provides useful outputs for CRM, such as a customer-specific lifetime and retention rate, which could not have been obtained otherwise. Its predictive performance is compared against the benchmark Pareto/NBD model. The model extension, as applied to scanner panel data, demonstrates that recency-frequency (RF) data, in conjunction with customer behavior and demographics, can provide important insights into direct marketing issues, such as whether long-life customers spend more and are more profitable.

Suggested Citation

  • Makoto Abe, 2006. ""Counting Your Customers" One by One: An Individual Level RF Analysis Based on Consumer Behavior Theory," CIRJE F-Series CIRJE-F-408, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2006cf408
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2006/2006cf408.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Young-Hoon Park & Peter S. Fader, 2004. "Modeling Browsing Behavior at Multiple Websites," Marketing Science, INFORMS, vol. 23(3), pages 280-303, May.
    2. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    3. Franses,Philip Hans & Paap,Richard, 2010. "Quantitative Models in Marketing Research," Cambridge Books, Cambridge University Press, number 9780521143653, September.
    4. David C. Schmittlein & Robert A. Peterson, 1994. "Customer Base Analysis: An Industrial Purchase Process Application," Marketing Science, INFORMS, vol. 13(1), pages 41-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    2. Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.
    3. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    4. David A. Schweidel & George Knox, 2013. "Incorporating Direct Marketing Activity into Latent Attrition Models," Marketing Science, INFORMS, vol. 32(3), pages 471-487, May.
    5. Makoto Abe, 2008. ""Counting Your Customers" One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," CIRJE F-Series CIRJE-F-537, CIRJE, Faculty of Economics, University of Tokyo.
    6. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
    7. Teck-Hua Ho & Young-Hoon Park & Yong-Pin Zhou, 2006. "Incorporating Satisfaction into Customer Value Analysis: Optimal Investment in Lifetime Value," Marketing Science, INFORMS, vol. 25(3), pages 260-277, 05-06.
    8. Makoto Abe, 2009. "“Counting Your Customers” One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 28(3), pages 541-553, 05-06.
    9. Jerath, Kinshuk & Fader, Peter S. & Hardie, Bruce G.S., 2016. "Customer-base analysis using repeated cross-sectional summary (RCSS) data," European Journal of Operational Research, Elsevier, vol. 249(1), pages 340-350.
    10. Chao Wang & Ilaria Dalla Pozza, 2014. "The antecedents of customer lifetime duration and discounted expected transactions: Discrete-time based transaction data analysis," Working Papers 2014-203, Department of Research, Ipag Business School.
    11. Eymann, Torsten (Ed.), 2009. "Tagungsband zum Doctoral Consortium der WI 2009 [WI2009 Doctoral Consortium Proceedings]," Bayreuth Reports on Information Systems Management 40, University of Bayreuth, Chair of Information Systems Management.
    12. Makoto Abe, 2009. "Customer Lifetime Value and RFM Data: Accounting Your Customers: One by One," CIRJE F-Series CIRJE-F-616, CIRJE, Faculty of Economics, University of Tokyo.
    13. David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.
    14. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    15. Stephan Curiskis & Xiaojing Dong & Fan Jiang & Mark Scarr, 2023. "A novel approach to predicting customer lifetime value in B2B SaaS companies," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 587-601, December.
    16. Füsun F. Gönül & Frenkel Ter Hofstede, 2006. "How to Compute Optimal Catalog Mailing Decisions," Marketing Science, INFORMS, vol. 25(1), pages 65-74, 01-02.
    17. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    18. Sunil Gupta & Valarie Zeithaml, 2006. "Customer Metrics and Their Impact on Financial Performance," Marketing Science, INFORMS, vol. 25(6), pages 718-739, 11-12.
    19. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    20. Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
    21. LEE, Janghyuk & KERBACHE, Laoucine, 2004. "Internet media planning : an optimization model," HEC Research Papers Series 806, HEC Paris.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2006cf408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.