IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v60y2014i6p1511-1531.html
   My bibliography  Save this article

On Theoretical and Empirical Aspects of Marginal Distribution Choice Models

Author

Listed:
  • Vinit Kumar Mishra

    (Department of Business Analytics, University of Sydney Business School, New South Wales 2006, Australia)

  • Karthik Natarajan

    (Engineering Systems and Design, Singapore University of Technology and Design, Singapore 138682)

  • Dhanesh Padmanabhan

    (General Motors Research and Development--India Science Lab, Bangalore 560066, India)

  • Chung-Piaw Teo

    (Department of Decision Sciences, National University of Singapore Business School, Singapore 117591)

  • Xiaobo Li

    (Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455)

Abstract

In this paper, we study the properties of a recently proposed class of semiparametric discrete choice models (referred to as the marginal distribution model (MDM)), by optimizing over a family of joint error distributions with prescribed marginal distributions. Surprisingly, the choice probabilities arising from the family of generalized extreme value models of which the multinomial logit model is a special case can be obtained from this approach, despite the difference in assumptions on the underlying probability distributions. We use this connection to develop flexible and general choice models to incorporate consumer and product level heterogeneity in both partworths and scale parameters in the choice model. Furthermore, the extremal distributions obtained from the MDM can be used to approximate the Fisher's information matrix to obtain reliable standard error estimates of the partworth parameters, without having to bootstrap the method. We use simulated and empirical data sets to test the performance of this approach. We evaluate the performance against the classical multinomial logit, mixed logit, and a machine learning approach that accounts for partworth heterogeneity. Our numerical results indicate that MDM provides a practical semiparametric alternative to choice modeling. This paper was accepted by Eric Bradlow, special issue on business analytics .

Suggested Citation

  • Vinit Kumar Mishra & Karthik Natarajan & Dhanesh Padmanabhan & Chung-Piaw Teo & Xiaobo Li, 2014. "On Theoretical and Empirical Aspects of Marginal Distribution Choice Models," Management Science, INFORMS, vol. 60(6), pages 1511-1531, June.
  • Handle: RePEc:inm:ormnsc:v:60:y:2014:i:6:p:1511-1531
    DOI: 10.1287/mnsc.2014.1906
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2014.1906
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2014.1906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. Seetharaman & Siddhartha Chib & Andrew Ainslie & Peter Boatwright & Tat Chan & Sachin Gupta & Nitin Mehta & Vithala Rao & Andrei Strijnev, 2005. "Models of Multi-Category Choice Behavior," Marketing Letters, Springer, vol. 16(3), pages 239-254, December.
    2. Karthik Natarajan & Miao Song & Chung-Piaw Teo, 2009. "Persistency Model and Its Applications in Choice Modeling," Management Science, INFORMS, vol. 55(3), pages 453-469, March.
    3. Linda Court Salisbury & Fred M. Feinberg, 2010. "Alleviating the Constant Stochastic Variance Assumption in Decision Research: Theory, Measurement, and Experimental Test," Marketing Science, INFORMS, vol. 29(1), pages 1-17, 01-02.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    5. Anderson, Simon Peter & de Palma, Andre & Thisse, Jacques-Francois, 1988. "A Representative Consumer Theory of the Logit Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(3), pages 461-466, August.
    6. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
    7. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    8. Andriy Norets & Satoru Takahashi, 2013. "On the surjectivity of the mapping between utilities and choice probabilities," Quantitative Economics, Econometric Society, vol. 4(1), pages 149-155, March.
    9. Saul Hoffman & Greg Duncan, 1988. "Multinomial and conditional logit discrete-choice models in demography," Demography, Springer;Population Association of America (PAA), vol. 25(3), pages 415-427, August.
    10. Brownstone, David & Small, Kenneth A, 1989. "Efficient Estimation of Nested Logit Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 67-74, January.
    11. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    12. Vivek F. Farias & Srikanth Jagabathula & Devavrat Shah, 2013. "A Nonparametric Approach to Modeling Choice with Limited Data," Management Science, INFORMS, vol. 59(2), pages 305-322, December.
    13. Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
    14. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    15. Young-Hoon Park & Peter S. Fader, 2004. "Modeling Browsing Behavior at Multiple Websites," Marketing Science, INFORMS, vol. 23(3), pages 280-303, May.
    16. Carlos F. Daganzo & Michael Kusnic, 1993. "Technical Note—Two Properties of the Nested Logit Model," Transportation Science, INFORMS, vol. 27(4), pages 395-400, November.
    17. Bhat, Chandra R., 1995. "A heteroscedastic extreme value model of intercity travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 471-483, December.
    18. Gideon Weiss, 1986. "Stochastic Bounds on Distributions of Optimal Value Functions with Applications to PERT, Network Flows and Reliability," Operations Research, INFORMS, vol. 34(4), pages 595-605, August.
    19. Peter J. Danaher, 2007. "Modeling Page Views Across Multiple Websites with an Application to Internet Reach and Frequency Prediction," Marketing Science, INFORMS, vol. 26(3), pages 422-437, 05-06.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tien Mai & Patrick Jaillet, 2020. "A Relation Analysis of Markov Decision Process Frameworks," Papers 2008.07820, arXiv.org.
    2. Claudia Castaldi & Paolo Delle Site & Francesco Filippi, 2019. "Stochastic user equilibrium in the presence of state dependence," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 535-559, December.
    3. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    4. Wei Qi & Xinggang Luo & Xuwang Liu & Yang Yu & Zhongliang Zhang, 2019. "Product Line Pricing under Marginal Moment Model with Network Effect," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    5. Selin Damla Ahipaşaoğlu & Uğur Arıkan & Karthik Natarajan, 2019. "Distributionally Robust Markovian Traffic Equilibrium," Transportation Science, INFORMS, vol. 53(6), pages 1546-1562, November.
    6. Aydın Alptekinoğlu & John H. Semple, 2021. "Heteroscedastic Exponomial Choice," Operations Research, INFORMS, vol. 69(3), pages 841-858, May.
    7. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    8. Guiyun Feng & Xiaobo Li & Zizhuo Wang, 2017. "Technical Note—On the Relation Between Several Discrete Choice Models," Operations Research, INFORMS, vol. 65(6), pages 1516-1525, December.
    9. Damla Ahipaşaoğlu, Selin & Arıkan, Uğur & Natarajan, Karthik, 2016. "On the flexibility of using marginal distribution choice models in traffic equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 130-158.
    10. Zhenzhen Yan & Karthik Natarajan & Chung Piaw Teo & Cong Cheng, 2022. "A Representative Consumer Model in Data-Driven Multiproduct Pricing Optimization," Management Science, INFORMS, vol. 68(8), pages 5798-5827, August.
    11. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.
    12. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    13. Yi-Chun Akchen & Dmitry Mitrofanov, 2023. "Consider or Choose? The Role and Power of Consideration Sets," Papers 2302.04354, arXiv.org, revised Jun 2024.
    14. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    15. David Muller & Emerson Melo & Ruben Schlotter, 2023. "A Distributionally Robust Random Utility Model," Papers 2303.05888, arXiv.org.
    16. Yi-Chun Chen & Velibor V. Mišić, 2022. "Decision Forest: A Nonparametric Approach to Modeling Irrational Choice," Management Science, INFORMS, vol. 68(10), pages 7090-7111, October.
    17. Zhang, Abraham & Zheng, Zhichao & Teo, Chung-Piaw, 2022. "Schedule reliability in liner shipping timetable design: A convex programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 499-525.
    18. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
    19. Lin, Xiaogang & Zhou, Yong-Wu & Xie, Wei & Zhong, Yuanguang & Cao, Bin, 2020. "Pricing and Product-bundling Strategies for E-commerce Platforms with Competition," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1026-1039.
    20. Yanqiu Ruan & Xiaobo Li & Karthyek Murthy & Karthik Natarajan, 2022. "A Nonparametric Approach with Marginals for Modeling Consumer Choice," Papers 2208.06115, arXiv.org, revised Jul 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.
    2. Guiyun Feng & Xiaobo Li & Zizhuo Wang, 2017. "Technical Note—On the Relation Between Several Discrete Choice Models," Operations Research, INFORMS, vol. 65(6), pages 1516-1525, December.
    3. Zhenzhen Yan & Karthik Natarajan & Chung Piaw Teo & Cong Cheng, 2022. "A Representative Consumer Model in Data-Driven Multiproduct Pricing Optimization," Management Science, INFORMS, vol. 68(8), pages 5798-5827, August.
    4. Aydın Alptekinoğlu & John H. Semple, 2021. "Heteroscedastic Exponomial Choice," Operations Research, INFORMS, vol. 69(3), pages 841-858, May.
    5. Mogens Fosgerau & Julien Monardo & André de Palma, 2019. "The Inverse Product Differentiation Logit Model," Working Papers hal-02183411, HAL.
    6. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    7. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    8. Roy Allen & John Rehbeck, 2020. "Identification of Random Coefficient Latent Utility Models," Papers 2003.00276, arXiv.org.
    9. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    10. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    11. Mogens Fosgerau & Emerson Melo & André de Palma & Matthew Shum, 2020. "Discrete Choice And Rational Inattention: A General Equivalence Result," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 61(4), pages 1569-1589, November.
    12. Ningyuan Chen & Guillermo Gallego & Zhuodong Tang, 2019. "The Use of Binary Choice Forests to Model and Estimate Discrete Choices," Papers 1908.01109, arXiv.org, revised Apr 2024.
    13. Kettlewell, Nathan & Walker, Matthew J. & Yoo, Hong Il, 2024. "Alternative Models of Preference Heterogeneity for Elicited Choice Probabilities," IZA Discussion Papers 16821, Institute of Labor Economics (IZA).
    14. John R. Hauser & Felix Eggers & Matthew Selove, 2019. "The Strategic Implications of Scale in Choice-Based Conjoint Analysis," Marketing Science, INFORMS, vol. 38(6), pages 1059-1081, November.
    15. David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.
    16. Hoyos, David, 2010. "The state of the art of environmental valuation with discrete choice experiments," Ecological Economics, Elsevier, vol. 69(8), pages 1595-1603, June.
    17. Michael Trusov & Liye Ma & Zainab Jamal, 2016. "Crumbs of the Cookie: User Profiling in Customer-Base Analysis and Behavioral Targeting," Marketing Science, INFORMS, vol. 35(3), pages 405-426, May.
    18. Sørensen, Jesper R.-V. & Fosgerau, Mogens, 2022. "How McFadden met Rockafellar and learned to do more with less," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    19. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    20. Erhao Xie, 2022. "Nonparametric Identification of Incomplete Information Discrete Games with Non-equilibrium Behaviors," Staff Working Papers 22-22, Bank of Canada.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:60:y:2014:i:6:p:1511-1531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.