IDEAS home Printed from https://ideas.repec.org/p/ebg/heccah/0806.html
   My bibliography  Save this paper

Internet media planning : an optimization model

Author

Listed:
  • LEE, Janghyuk
  • KERBACHE, Laoucine

Abstract

Of the various media vehicles available for advertising, the internet is the latest and the most rapidly growing, emerging as the ideal medium to promote products and services in the global market. In this article, the authors propose an internet media planning model whose main objective is to help advertisers determine the return they obtain from spending on internet advertising. Using available data such as internet page view and advertising performance data, the model contributes to attempts not only to optimize the internet advertising schedule but also to fix the right price for internet advertisements on the basis of the characteristics of the exposure distribution of sites. The authors test the model with data provided by KoreanClick, a Korean market research company that specializes in internet audience measurement. The optimal durations for the subject sites provide some useful insights. The findings contrast with current web media planning practices, and the authors demonstrate the potential savings that could be achieved if their approach were applied.

Suggested Citation

  • LEE, Janghyuk & KERBACHE, Laoucine, 2004. "Internet media planning : an optimization model," HEC Research Papers Series 806, HEC Paris.
  • Handle: RePEc:ebg:heccah:0806
    as

    Download full text from publisher

    File URL: http://www.hec.fr/var/fre/storage/original/application/f08f50593b58e5bef3121744e37409ad.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rust, Roland T., 1985. "Selecting network television advertising schedules," Journal of Business Research, Elsevier, vol. 13(6), pages 483-494, December.
    2. Belch, George E, 1982. "The Effects of Television Commercial Repetition on Cognitive Response and Message Acceptance," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 9(1), pages 56-65, June.
    3. A. S. C. Ehrenberg, 1959. "The Pattern of Consumer Purchases," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 8(1), pages 26-41, March.
    4. M. L. Vidale & H. B. Wolfe, 1957. "An Operations-Research Study of Sales Response to Advertising," Operations Research, INFORMS, vol. 5(3), pages 370-381, June.
    5. John D. C. Little & Leonard M. Lodish, 1969. "A Media Planning Calculus," Operations Research, INFORMS, vol. 17(1), pages 1-35, February.
    6. Young-Hoon Park & Peter S. Fader, 2004. "Modeling Browsing Behavior at Multiple Websites," Marketing Science, INFORMS, vol. 23(3), pages 280-303, May.
    7. Berger, Ida E & Mitchell, Andrew A, 1989. "The Effect of Advertising on Attitude Accessibility, Attitude Confidence, and the Attitude-Behavior Relationship," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 16(3), pages 269-279, December.
    8. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasad A. Naik & Murali K. Mantrala & Alan G. Sawyer, 1998. "Planning Media Schedules in the Presence of Dynamic Advertising Quality," Marketing Science, INFORMS, vol. 17(3), pages 214-235.
    2. Danaher, Peter J. & Rust, Roland T., 1996. "Determining the optimal return on investment for an advertising campaign," European Journal of Operational Research, Elsevier, vol. 95(3), pages 511-521, December.
    3. Peter J. Danaher & Janghyuk Lee & Laoucine Kerbache, 2010. "Optimal Internet Media Selection," Marketing Science, INFORMS, vol. 29(2), pages 336-347, 03-04.
    4. Patrice Cailleba & Herbert Casteran, 2010. "Do Ethical Values Work? A Quantitative Study of the Impact of Fair Trade Coffee on Consumer Behavior," Journal of Business Ethics, Springer, vol. 97(4), pages 613-624, December.
    5. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    6. David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.
    7. Javier Marin, 2024. "Social Dynamics of Consumer Response: A Unified Framework Integrating Statistical Physics and Marketing Dynamics," Papers 2404.02175, arXiv.org, revised Oct 2024.
    8. Peter J. Danaher, 2007. "Modeling Page Views Across Multiple Websites with an Application to Internet Reach and Frequency Prediction," Marketing Science, INFORMS, vol. 26(3), pages 422-437, 05-06.
    9. Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.
    10. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    11. Clemente-Císcar, M. & San Matías, S. & Giner-Bosch, V., 2014. "A methodology based on profitability criteria for defining the partial defection of customers in non-contractual settings," European Journal of Operational Research, Elsevier, vol. 239(1), pages 276-285.
    12. Frank M. Bass & Norris Bruce & Sumit Majumdar & B. P. S. Murthi, 2007. "Wearout Effects of Different Advertising Themes: A Dynamic Bayesian Model of the Advertising-Sales Relationship," Marketing Science, INFORMS, vol. 26(2), pages 179-195, 03-04.
    13. Makoto Abe, 2008. ""Counting Your Customers" One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," CIRJE F-Series CIRJE-F-537, CIRJE, Faculty of Economics, University of Tokyo.
    14. Makoto Abe, 2006. ""Counting Your Customers" One by One: An Individual Level RF Analysis Based on Consumer Behavior Theory," CIRJE F-Series CIRJE-F-408, CIRJE, Faculty of Economics, University of Tokyo.
    15. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
    16. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
    17. Steven M. Shugan, 2002. "Editorial: Marketing Science, Models, Monopoly Models, and Why We Need Them," Marketing Science, INFORMS, vol. 21(3), pages 223-228.
    18. Teck-Hua Ho & Young-Hoon Park & Yong-Pin Zhou, 2006. "Incorporating Satisfaction into Customer Value Analysis: Optimal Investment in Lifetime Value," Marketing Science, INFORMS, vol. 25(3), pages 260-277, 05-06.
    19. Fader, Peter S. & Hardie, Bruce G.S., 2009. "Probability Models for Customer-Base Analysis," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 61-69.
    20. Zhiqiang (Eric) Zheng & Peter Fader & Balaji Padmanabhan, 2012. "From Business Intelligence to Competitive Intelligence: Inferring Competitive Measures Using Augmented Site-Centric Data," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 698-720, September.
    21. Makoto Abe, 2009. "“Counting Your Customers” One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 28(3), pages 541-553, 05-06.

    More about this item

    Keywords

    media planning; optimization; advertising repeat exposure; probability distribution; internet;
    All these keywords.

    JEL classification:

    • L86 - Industrial Organization - - Industry Studies: Services - - - Information and Internet Services; Computer Software
    • M37 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Advertising

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebg:heccah:0806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antoine Haldemann (email available below). General contact details of provider: https://edirc.repec.org/data/hecpafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.