IDEAS home Printed from https://ideas.repec.org/r/inm/ormksc/v1y1982i1p57-78.html
   My bibliography  Save this item

Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lang Liang, 2021. "Novel Optimization-Based Parameter Estimation Method for the Bass Diffusion Model," SAGE Open, , vol. 11(2), pages 21582440211, June.
  2. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
  3. F-M Tseng, 2008. "Quadratic interval innovation diffusion models for new product sales forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1120-1127, August.
  4. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
  5. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
  6. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
  7. Urban, Glen L. & Weinberg, Bruce D. & Hauser, John R., 1994. "Premarket forecasting of really new products," Working papers 3689-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  8. Bentley, R. Alexander & Ormerod, Paul, 2010. "A rapid method for assessing social versus independent interest in health issues: A case study of 'bird flu' and 'swine flu'," Social Science & Medicine, Elsevier, vol. 71(3), pages 482-485, August.
  9. Jacob Grazzini & Matteo Richiardi & Lisa Sella, 2012. "Indirect estimation of agent-based models.An application to a simple diffusion model," LABORatorio R. Revelli Working Papers Series 118, LABORatorio R. Revelli, Centre for Employment Studies.
  10. Islam, Towhidul, 2014. "Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data," Energy Policy, Elsevier, vol. 65(C), pages 340-350.
  11. Rajkumar Venkatesan & Trichy V. Krishnan & V. Kumar, 2004. "Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares," Marketing Science, INFORMS, vol. 23(3), pages 451-464, August.
  12. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
  13. Hailin Zhang & Xina Yuan & Tae Ho Song, 2020. "Examining the role of the marketing activity and eWOM in the movie diffusion: the decomposition perspective," Electronic Commerce Research, Springer, vol. 20(3), pages 589-608, September.
  14. Negahban, Ashkan & Smith, Jeffrey S., 2018. "Optimal production-sales policies and entry time for successive generations of new products," International Journal of Production Economics, Elsevier, vol. 199(C), pages 220-232.
  15. Sam K. Hui & Jehoshua Eliashberg & Edward I. George, 2008. "Modeling DVD Preorder and Sales: An Optimal Stopping Approach," Marketing Science, INFORMS, vol. 27(6), pages 1097-1110, 11-12.
  16. Olivier Toubia & Jacob Goldenberg & Rosanna Garcia, 2014. "Improving Penetration Forecasts Using Social Interactions Data," Management Science, INFORMS, vol. 60(12), pages 3049-3066, December.
  17. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
  18. Kaijie Zhu & Ulrich W. Thonemann, 2004. "An adaptive forecasting algorithm and inventory policy for products with short life cycles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 633-653, August.
  19. Islam, Towhidul & Fiebig, Denzil G. & Meade, Nigel, 2002. "Modelling multinational telecommunications demand with limited data," International Journal of Forecasting, Elsevier, vol. 18(4), pages 605-624.
  20. Javier Alonso & Alfonso Arellano, 2015. "Heterogeneity and diffusion in the digital economy: Spain’s case," Working Papers 1529, BBVA Bank, Economic Research Department.
  21. Hong Joo Lee & Hoyeon Oh, 2020. "A Study on the Deduction and Diffusion of Promising Artificial Intelligence Technology for Sustainable Industrial Development," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
  22. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
  23. James, Waters, 2015. "Do vegetarian marketing campaigns promote a vegan diet?," MPRA Paper 66737, University Library of Munich, Germany.
  24. Nirupam Mukhopadhyay & Narayan Chandra Nayak, 2024. "Catalyzing change: a cross-country perspective on diffusion patterns of green innovation," Environment Systems and Decisions, Springer, vol. 44(4), pages 853-871, December.
  25. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
  26. Ramin Shabanpour & Ali Shamshiripour & Abolfazl Mohammadian, 2018. "Modeling adoption timing of autonomous vehicles: innovation diffusion approach," Transportation, Springer, vol. 45(6), pages 1607-1621, November.
  27. Hlavinka, Alexander N. & Mjelde, James W. & Dharmasena, Senarath & Holland, Christine, 2016. "Forecasting the adoption of residential ductless heat pumps," Energy Economics, Elsevier, vol. 54(C), pages 60-67.
  28. Arkadiusz Kijek & Tomasz Kijek, 2010. "Modelling of innovation diffusion," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 20(3-4), pages 53-68.
  29. Nikolaos E. Petridis & Georgios Digkas & Leonidas Anastasakis, 2020. "Factors affecting innovation and imitation of ICT in the agrifood sector," Annals of Operations Research, Springer, vol. 294(1), pages 501-514, November.
  30. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
  31. Alex Bentley & Paul Ormerod, 2009. "Tradition And Fashion In Consumer Choice: Bagging The Scottish Munros," Scottish Journal of Political Economy, Scottish Economic Society, vol. 56(3), pages 371-381, July.
  32. Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
  33. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
  34. Najmeh Madadi & Azanizawati Ma’aram & Kuan Yew Wong, 2017. "A simulation-based product diffusion forecasting method using geometric Brownian motion and spline interpolation," Cogent Business & Management, Taylor & Francis Journals, vol. 4(1), pages 1300992-130, January.
  35. Waters, James, 2013. "Variable marginal propensities to pirate and the diffusion of computer software," MPRA Paper 46036, University Library of Munich, Germany.
  36. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
  37. Lee, Hakyeon & Kim, Sang Gook & Park, Hyun-woo & Kang, Pilsung, 2014. "Pre-launch new product demand forecasting using the Bass model: A statistical and machine learning-based approach," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 49-64.
  38. Shun-Chen Niu, 2006. "A Piecewise-Diffusion Model of New-Product Demands," Operations Research, INFORMS, vol. 54(4), pages 678-695, August.
  39. Islam, Towhidul & Meade, Nigel, 2000. "Modelling diffusion and replacement," European Journal of Operational Research, Elsevier, vol. 125(3), pages 551-570, September.
  40. Kim, Namwoon & Srivastava, Rajendra K., 2007. "Modeling cross-price effects on inter-category dynamics: The case of three computing platforms," Omega, Elsevier, vol. 35(3), pages 290-301, June.
  41. Shiva & Neetu Gupta & Anu G. Aggarwal, 2024. "A generalized product adoption model under random marketing conditions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(10), pages 4897-4904, October.
  42. Hong, Jungsik & Koo, Hoonyoung & Kim, Taegu, 2016. "Easy, reliable method for mid-term demand forecasting based on the Bass model: A hybrid approach of NLS and OLS," European Journal of Operational Research, Elsevier, vol. 248(2), pages 681-690.
  43. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
  44. Fernández-Durán, J.J., 2014. "Modeling seasonal effects in the Bass Forecasting Diffusion Model," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 251-264.
  45. Bemmaor, Albert C. & Zheng, Li, 2018. "The diffusion of mobile social networking: Further study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 612-621.
  46. Sung Yong Chun & Minhi Hahn, 2008. "A diffusion model for products with indirect network externalities," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 357-370.
  47. Samuel Bjork & Avner Offer & Gabriel Söderberg, 2014. "Time series citation data: the Nobel Prize in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 185-196, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.