IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v59y2008i8d10.1057_palgrave.jors.2602457.html
   My bibliography  Save this article

Quadratic interval innovation diffusion models for new product sales forecasting

Author

Listed:
  • F-M Tseng

    (Yuan Ze University)

Abstract

An appropriate sales forecasting method is vital to the success of a business firm. The logistic model and the Gompertz model are usually adopted to forecast the growth trends and the potential market volume of innovative products. All of these models rely on statistics to explain the relationships between dependent and independent variables, and use crisp parameters. However, fuzzy relationships are more appropriate for describing the relationships between dependent and independent variables; these relationships require less data than traditional models to generate reasonable estimates of parameters. Therefore, we have combined fuzzy regression with the logistic and Gompertz models to develop a quadratic-interval Gompertz model and a quadratic-interval logistic model, and we applied the models to three cases. Our practical application of the two models shows that they are appropriate tools that can reveal the best and worst possible sales volume outcomes.

Suggested Citation

  • F-M Tseng, 2008. "Quadratic interval innovation diffusion models for new product sales forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1120-1127, August.
  • Handle: RePEc:pal:jorsoc:v:59:y:2008:i:8:d:10.1057_palgrave.jors.2602457
    DOI: 10.1057/palgrave.jors.2602457
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602457
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roger M. Heeler & Thomas P. Hustad, 1980. "Problems in Predicting New Product Growth for Consumer Durables," Management Science, INFORMS, vol. 26(10), pages 1007-1020, October.
    2. Barry L. Bayus, 1993. "High-Definition Television: Assessing Demand Forecasts for a Next Generation Consumer Durable," Management Science, INFORMS, vol. 39(11), pages 1319-1333, November.
    3. Kim, Kwang Jae & Moskowitz, Herbert & Koksalan, Murat, 1996. "Fuzzy versus statistical linear regression," European Journal of Operational Research, Elsevier, vol. 92(2), pages 417-434, July.
    4. David C. Schmittlein & Vijay Mahajan, 1982. "Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 1(1), pages 57-78.
    5. Gruber, Harald, 2001. "Competition and innovation: The diffusion of mobile telecommunications in Central and Eastern Europe," Information Economics and Policy, Elsevier, vol. 13(1), pages 19-34, March.
    6. Meade, Nigel & Islam, Towhidul, 1995. "Forecasting with growth curves: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 11(2), pages 199-215, June.
    7. Botelho, Anabela & Pinto, L.C.Lígia Costa, 0. "The diffusion of cellular phones in Portugal," Telecommunications Policy, Elsevier, vol. 28(5-6), pages 427-437, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M Günther & C Stummer & L M Wakolbinger & M Wildpaner, 2011. "An agent-based simulation approach for the new product diffusion of a novel biomass fuel," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 12-20, January.
    2. Shi, Xiaohui & Chumnumpan, Pattarin, 2019. "Modelling market dynamics of multi-brand and multi-generational products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 199-210.
    3. Wong, Bo K. & Lai, Vincent S., 2011. "A survey of the application of fuzzy set theory in production and operations management: 1998-2009," International Journal of Production Economics, Elsevier, vol. 129(1), pages 157-168, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Ashutosh & Saha, Debashis, 2020. "“Forecasting and analysing the characteristics of 3G and 4G mobile broadband diffusion in India: A comparative evaluation of Bass, Norton-Bass, Gompertz, and logistic growth models”," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    2. Lee, Hakyeon & Kim, Sang Gook & Park, Hyun-woo & Kang, Pilsung, 2014. "Pre-launch new product demand forecasting using the Bass model: A statistical and machine learning-based approach," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 49-64.
    3. Islam, Towhidul & Fiebig, Denzil G. & Meade, Nigel, 2002. "Modelling multinational telecommunications demand with limited data," International Journal of Forecasting, Elsevier, vol. 18(4), pages 605-624.
    4. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    5. Kim, Namwoon & Srivastava, Rajendra K., 2007. "Modeling cross-price effects on inter-category dynamics: The case of three computing platforms," Omega, Elsevier, vol. 35(3), pages 290-301, June.
    6. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    7. Thakur Dhakal & Dae-Eun Lim, 2020. "Understanding ICT adoption in SAARC member countries," Letters in Spatial and Resource Sciences, Springer, vol. 13(1), pages 67-80, April.
    8. Scott A. Shane & Karl T. Ulrich, 2004. "50th Anniversary Article: Technological Innovation, Product Development, and Entrepreneurship in Management Science," Management Science, INFORMS, vol. 50(2), pages 133-144, February.
    9. Hlavinka, Alexander N. & Mjelde, James W. & Dharmasena, Senarath & Holland, Christine, 2016. "Forecasting the adoption of residential ductless heat pumps," Energy Economics, Elsevier, vol. 54(C), pages 60-67.
    10. Fildes, Robert & Kumar, V., 2002. "Telecommunications demand forecasting--a review," International Journal of Forecasting, Elsevier, vol. 18(4), pages 489-522.
    11. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    12. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
    13. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    14. Theologos Dergiades & Apostolos Dasilas, 2010. "Modelling and forecasting mobile telecommunication services: the case of Greece," Applied Economics Letters, Taylor & Francis Journals, vol. 17(18), pages 1823-1828.
    15. Tseng, Fang-Mei & Wang, Shenq-Yuan & Hsieh, Chih-Hung & Guo, Aifang, 2014. "An integrated model for analyzing the development of the 4G telecommunications market in Taiwan," Telecommunications Policy, Elsevier, vol. 38(1), pages 14-31.
    16. Avila, Luz Angelica Pirir & Lee, Deok-Joo & Kim, Taegu, 2018. "Diffusion and competitive relationship of mobile telephone service in Guatemala: An empirical analysis," Telecommunications Policy, Elsevier, vol. 42(2), pages 116-126.
    17. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    18. Ramin Shabanpour & Ali Shamshiripour & Abolfazl Mohammadian, 2018. "Modeling adoption timing of autonomous vehicles: innovation diffusion approach," Transportation, Springer, vol. 45(6), pages 1607-1621, November.
    19. Coppi, Renato & D'Urso, Pierpaolo & Giordani, Paolo & Santoro, Adriana, 2006. "Least squares estimation of a linear regression model with LR fuzzy response," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 267-286, November.
    20. Gamboa, Luis Fernando & Otero, Jesús, 0. "An estimation of the pattern of diffusion of mobile phones: The case of Colombia," Telecommunications Policy, Elsevier, vol. 33(10-11), pages 611-620, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:59:y:2008:i:8:d:10.1057_palgrave.jors.2602457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.