IDEAS home Printed from https://ideas.repec.org/a/sae/globus/v25y2024i4p981-1001.html
   My bibliography  Save this article

Diffusion of Banking Products in Financial Inclusion Linked Savings Accounts: A Case Study Based on Pradhan Mantri Jan Dhan Yojana in India

Author

Listed:
  • Vinay Kumar Singh
  • Rohit Prasad

Abstract

The slow rate of adoption of savings and transaction accounts opened under financial inclusion programmes is a challenge for policymakers across the globe. We use the experience of a large-scale financial inclusion programme in India—Pradhan Mantri Jan Dhan Yojana (PMJDY)—to model the adoption of simple banking products, namely deposit, withdrawal, fund transfer and ATM usage. Based on account-level transaction data, we create a dataset to capture the adoption of each product over time. We use this data to estimate three growth models: Bass, Gompertz and logistic. The Bass model which is based on diffusion of innovations theory is found to be the best fit across products. The role of social influence in the diffusion of the four products studied is found to be much lower when compared to other products in subsistence marketplaces. Social network effect is comparatively stronger in the adoption of fund transfer and ATM. We discuss the mechanisms underlying this phenomenon and contend that information transfer by word of mouth and network effects are the most probable reasons for the observed adoption behaviour.

Suggested Citation

  • Vinay Kumar Singh & Rohit Prasad, 2024. "Diffusion of Banking Products in Financial Inclusion Linked Savings Accounts: A Case Study Based on Pradhan Mantri Jan Dhan Yojana in India," Global Business Review, International Management Institute, vol. 25(4), pages 981-1001, August.
  • Handle: RePEc:sae:globus:v:25:y:2024:i:4:p:981-1001
    DOI: 10.1177/09721509211006866
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/09721509211006866
    Download Restriction: no

    File URL: https://libkey.io/10.1177/09721509211006866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David C. Schmittlein & Vijay Mahajan, 1982. "Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 1(1), pages 57-78.
    2. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    3. Shlomo Kalish & Gary L. Lilien, 1986. "A Market Entry Timing Model for New Technologies," Management Science, INFORMS, vol. 32(2), pages 194-205, February.
    4. John Beshears & James J. Choi & David Laibson & Brigitte C. Madrian & Katherine L. Milkman, 2015. "The Effect of Providing Peer Information on Retirement Savings Decisions," Journal of Finance, American Finance Association, vol. 70(3), pages 1161-1201, June.
    5. Jing Cai & Alain De Janvry & Elisabeth Sadoulet, 2015. "Social Networks and the Decision to Insure," American Economic Journal: Applied Economics, American Economic Association, vol. 7(2), pages 81-108, April.
    6. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    7. Duflo, Esther & Saez, Emmanuel, 2002. "Participation and investment decisions in a retirement plan: the influence of colleagues' choices," Journal of Public Economics, Elsevier, vol. 85(1), pages 121-148, July.
    8. V. Srinivasan & Charlotte H. Mason, 1986. "Technical Note—Nonlinear Least Squares Estimation of New Product Diffusion Models," Marketing Science, INFORMS, vol. 5(2), pages 169-178.
    9. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    10. Jeffrey R. Brown & Zoran Ivković & Paul A. Smith & Scott Weisbenner, 2008. "Neighbors Matter: Causal Community Effects and Stock Market Participation," Journal of Finance, American Finance Association, vol. 63(3), pages 1509-1531, June.
    11. McRoberts, Neil & Franke, A.C., 2008. "A diffusion model for the adoption of agricultural innovations in structured adopting populations," Working Papers 61117, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    12. Paige Ouimet & Geoffrey Tate, 2020. "Learning from Coworkers: Peer Effects on Individual Investment Decisions," Journal of Finance, American Finance Association, vol. 75(1), pages 133-172, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    2. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    3. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    4. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    5. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    6. Bemmaor, Albert C. & Zheng, Li, 2018. "The diffusion of mobile social networking: Further study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 612-621.
    7. Franses, Philip Hans, 2021. "Modeling box office revenues of motion pictures✰," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    8. Zhao, Chuanmin & Qu, Xi, 2021. "Peer effects in pension decision-making: evidence from China's new rural pension scheme," Labour Economics, Elsevier, vol. 69(C).
    9. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    10. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    11. Dur, Robert & Fleming, Dimitry & van Garderen, Marten & van Lent, Max, 2021. "A social norm nudge to save more: A field experiment at a retail bank," Journal of Public Economics, Elsevier, vol. 200(C).
    12. Hlavinka, Alexander N. & Mjelde, James W. & Dharmasena, Senarath & Holland, Christine, 2016. "Forecasting the adoption of residential ductless heat pumps," Energy Economics, Elsevier, vol. 54(C), pages 60-67.
    13. Hailin Zhang & Xina Yuan & Tae Ho Song, 2020. "Examining the role of the marketing activity and eWOM in the movie diffusion: the decomposition perspective," Electronic Commerce Research, Springer, vol. 20(3), pages 589-608, September.
    14. Waters, James, 2013. "Variable marginal propensities to pirate and the diffusion of computer software," MPRA Paper 46036, University Library of Munich, Germany.
    15. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    16. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
    17. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    18. Negahban, Ashkan & Smith, Jeffrey S., 2018. "Optimal production-sales policies and entry time for successive generations of new products," International Journal of Production Economics, Elsevier, vol. 199(C), pages 220-232.
    19. Scaglione, Miriam & Giovannetti, Emanuele & Hamoudia, Mohsen, 2015. "The diffusion of mobile social networking: Exploring adoption externalities in four G7 countries," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1159-1170.
    20. Das, Tanmoy & Banerjee, Priyodorshi, 2023. "Peer effects on decision making in complex financial situations," Economic Modelling, Elsevier, vol. 127(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:globus:v:25:y:2024:i:4:p:981-1001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.imi.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.