IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v23y2004i3p451-464.html
   My bibliography  Save this article

Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares

Author

Listed:
  • Rajkumar Venkatesan

    (School of Business, University of Connecticut, Storrs, Connecticut 06269-1041)

  • Trichy V. Krishnan

    (Department of Marketing, National University of Singapore, Singapore)

  • V. Kumar

    (School of Business, University of Connecticut, Storrs, Connecticut 06269-1041)

Abstract

In this paper, we provide theoretical arguments and empirical evidence for how Genetic Algorithms (GA) can be used for efficient estimation of macro-level diffusion models. Using simulations we find that GA and Sequential Search-Based-Nonlinear Least Squares (SSB-NLS) provide comparable parameter estimates when the data including peak sales are being used, for a range of error variances, and true parameter values commonly encountered in the literature. From empirical analyses we find that the forecasting performance of the GA estimates is better than that of SSB-NLS, Augmented Filter, Hierarchical Bayes, and Kalman Filter when only pre-peak sales data is available for estimation. When sales data until the peak time period are available for estimation, SSB-NLS is able to obtain parameter estimates when the starting values provided are the estimates from using GA. The estimates from GA are not biased and do not change in a systematic fashion when post-peak sales data are used, whereas the estimates from SSB-NLS are biased and change in a systematic fashion. Summarizing, we find that GA may be better suited for diffusion model estimation under the three conditions where SSB-NLS has been found to have problems.

Suggested Citation

  • Rajkumar Venkatesan & Trichy V. Krishnan & V. Kumar, 2004. "Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares," Marketing Science, INFORMS, vol. 23(3), pages 451-464, August.
  • Handle: RePEc:inm:ormksc:v:23:y:2004:i:3:p:451-464
    DOI: 10.1287/mksc.1040.0056
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1040.0056
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1040.0056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tal Garber & Jacob Goldenberg & Barak Libai & Eitan Muller, 2004. "From Density to Destiny: Using Spatial Dimension of Sales Data for Early Prediction of New Product Success," Marketing Science, INFORMS, vol. 23(3), pages 419-428, August.
    2. David C. Schmittlein & Vijay Mahajan, 1982. "Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 1(1), pages 57-78.
    3. V. Kumar & Trichy V. Krishnan, 2002. "Multinational Diffusion Models: An Alternative Framework," Marketing Science, INFORMS, vol. 21(3), pages 318-330, July.
    4. Parker, Philip M., 1994. "Aggregate diffusion forecasting models in marketing: A critical review," International Journal of Forecasting, Elsevier, vol. 10(2), pages 353-380, September.
    5. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    6. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    7. David F. Midgley & Robert E. Marks & Lee C. Cooper, 1997. "Breeding Competitive Strategies," Management Science, INFORMS, vol. 43(3), pages 257-275, March.
    8. P. V. (Sundar) Balakrishnan & Varghese S. Jacob, 1996. "Genetic Algorithms for Product Design," Management Science, INFORMS, vol. 42(8), pages 1105-1117, August.
    9. Christophe Van den Bulte & Gary L. Lilien, 1997. "Bias and Systematic Change in the Parameter Estimates of Macro-Level Diffusion Models," Marketing Science, INFORMS, vol. 16(4), pages 338-353.
    10. Peter J. Lenk & Ambar G. Rao, 1990. "New Models from Old: Forecasting Product Adoption by Hierarchical Bayes Procedures," Marketing Science, INFORMS, vol. 9(1), pages 42-53.
    11. V. Srinivasan & Charlotte H. Mason, 1986. "Technical Note—Nonlinear Least Squares Estimation of New Product Diffusion Models," Marketing Science, INFORMS, vol. 5(2), pages 169-178.
    12. Christopher J. Easingwood & Vijay Mahajan & Eitan Muller, 1983. "A Nonuniform Influence Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 2(3), pages 273-295.
    13. McCullough, B. D. & Wilson, Berry, 1999. "On the accuracy of statistical procedures in Microsoft Excel 97," Computational Statistics & Data Analysis, Elsevier, vol. 31(1), pages 27-37, July.
    14. Amiya Basu & Tridib Mazumdar & S. P. Raj, 2003. "Indirect Network Externality Effects on Product Attributes," Marketing Science, INFORMS, vol. 22(2), pages 209-221, April.
    15. Jain, Dipak C & Rao, Ram C, 1990. "Effect of Price on the Demand for Durables: Modeling, Estimation, and Findings," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 163-170, April.
    16. Gerard J. Tellis & Stefan Stremersch & Eden Yin, 2003. "The International Takeoff of New Products: The Role of Economics, Culture, and Country Innovativeness," Marketing Science, INFORMS, vol. 22(2), pages 188-208, October.
    17. Albert C. Bemmaor & Janghyuk Lee, 2002. "The Impact of Heterogeneity and Ill-Conditioning on Diffusion Model Parameter Estimates," Marketing Science, INFORMS, vol. 21(2), pages 209-220, November.
    18. Dorsey, Robert E & Mayer, Walter J, 1995. "Genetic Algorithms for Estimation Problems with Multiple Optima, Nondifferentiability, and Other Irregular Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 53-66, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
    2. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    3. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    4. Olivier Toubia & Jacob Goldenberg & Rosanna Garcia, 2014. "Improving Penetration Forecasts Using Social Interactions Data," Management Science, INFORMS, vol. 60(12), pages 3049-3066, December.
    5. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    6. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    7. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    8. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    9. Jacob Goldenberg & Oded Lowengart & Daniel Shapira, 2009. "Zooming In: Self-Emergence of Movements in New Product Growth," Marketing Science, INFORMS, vol. 28(2), pages 274-292, 03-04.
    10. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    11. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    12. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    13. Shun-Chen Niu, 2006. "A Piecewise-Diffusion Model of New-Product Demands," Operations Research, INFORMS, vol. 54(4), pages 678-695, August.
    14. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    15. Fernández-Durán, J.J., 2014. "Modeling seasonal effects in the Bass Forecasting Diffusion Model," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 251-264.
    16. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
    17. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    18. Franses, Ph.H.B.F., 2009. "Forecasting Sales," Econometric Institute Research Papers EI 2009-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    20. Benson Tsz Kin Leung, 2022. "Innovation Diffusion among Case-based Decision-makers," Papers 2203.05785, arXiv.org, revised Jan 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:23:y:2004:i:3:p:451-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.