IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v34y2018i4p612-621.html
   My bibliography  Save this article

The diffusion of mobile social networking: Further study

Author

Listed:
  • Bemmaor, Albert C.
  • Zheng, Li

Abstract

In a recent study, Scaglione et al. (2015) analyzed the diffusion of mobile social networking in four G7 countries. Using Bass’s model and Bemmaor’s Gamma/Shifted Gompertz (G/SG) model, they found evidence of a left skew in the right-censored distributions of the times to adoption in three countries out of four. However, this conclusion relied on the skewness parameter of Bemmaor’s model. We reanalyze the data, making use of three special cases of the G/SG as well as the full version. Extending the data set to six countries, we show that (i) fitting the four models to the data does not allow us to discriminate between models, but (ii) forecasting the subsequent adoptions provides a strong support of right skewness in the data set: each country (except France) shows a substantial mass of later adopters of mobile social networking following an initial embrace of the access.

Suggested Citation

  • Bemmaor, Albert C. & Zheng, Li, 2018. "The diffusion of mobile social networking: Further study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 612-621.
  • Handle: RePEc:eee:intfor:v:34:y:2018:i:4:p:612-621
    DOI: 10.1016/j.ijforecast.2018.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207018300736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2018.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David C. Schmittlein & Vijay Mahajan, 1982. "Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 1(1), pages 57-78.
    2. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    3. Goldenberg, Jacob & Libai, Barak & Muller, Eitan, 2010. "The chilling effects of network externalities," International Journal of Research in Marketing, Elsevier, vol. 27(1), pages 4-15.
    4. V. Srinivasan & Charlotte H. Mason, 1986. "Technical Note—Nonlinear Least Squares Estimation of New Product Diffusion Models," Marketing Science, INFORMS, vol. 5(2), pages 169-178.
    5. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    6. Trajtenberg, Manuel & Yitzhaki, Shlomo, 1989. "The Diffusion of Innovations: A Methodological Reappraisal," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 35-47, January.
    7. Scaglione, Miriam & Giovannetti, Emanuele & Hamoudia, Mohsen, 2015. "The diffusion of mobile social networking: Exploring adoption externalities in four G7 countries," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1159-1170.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    2. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    3. Franses, Philip Hans, 2021. "Modeling box office revenues of motion pictures✰," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    4. Shun-Chen Niu, 2006. "A Piecewise-Diffusion Model of New-Product Demands," Operations Research, INFORMS, vol. 54(4), pages 678-695, August.
    5. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    6. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    7. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    8. Negahban, Ashkan & Smith, Jeffrey S., 2018. "Optimal production-sales policies and entry time for successive generations of new products," International Journal of Production Economics, Elsevier, vol. 199(C), pages 220-232.
    9. Scaglione, Miriam & Giovannetti, Emanuele & Hamoudia, Mohsen, 2015. "The diffusion of mobile social networking: Exploring adoption externalities in four G7 countries," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1159-1170.
    10. Kim, Namwoon & Srivastava, Rajendra K., 2007. "Modeling cross-price effects on inter-category dynamics: The case of three computing platforms," Omega, Elsevier, vol. 35(3), pages 290-301, June.
    11. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
    12. Ashkan Negahban & Jeffrey S. Smith, 2018. "A joint analysis of production and seeding strategies for new products: an agent-based simulation approach," Annals of Operations Research, Springer, vol. 268(1), pages 41-62, September.
    13. Samuel Bjork & Avner Offer & Gabriel Söderberg, 2014. "Time series citation data: the Nobel Prize in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 185-196, January.
    14. Alexei Parakhonyak & Nick Vikander, 2019. "Optimal Sales Schemes for Network Goods," Management Science, INFORMS, vol. 65(2), pages 819-841, February.
    15. Chaab, Jafar & Zaccour, Georges, 2024. "Dynamic pricing in the presence of social externalities and reference-price effect," Omega, Elsevier, vol. 122(C).
    16. Carlos A. Arbelaez-Velasquez & Diana Giraldo & Santiago Quintero, 2022. "Analysis of a Teleworking Technology Adoption Case: An Agent-Based Model," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    17. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    18. Olivier Toubia & Jacob Goldenberg & Rosanna Garcia, 2014. "Improving Penetration Forecasts Using Social Interactions Data," Management Science, INFORMS, vol. 60(12), pages 3049-3066, December.
    19. Nejad, Mohammad G. & Amini, Mehdi & Babakus, Emin, 2015. "Success Factors in Product Seeding: The Role of Homophily," Journal of Retailing, Elsevier, vol. 91(1), pages 68-88.
    20. Nirupam Mukhopadhyay & Narayan Chandra Nayak, 2024. "Catalyzing change: a cross-country perspective on diffusion patterns of green innovation," Environment Systems and Decisions, Springer, vol. 44(4), pages 853-871, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:34:y:2018:i:4:p:612-621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.