IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v45y2018i6d10.1007_s11116-018-9947-7.html
   My bibliography  Save this article

Modeling adoption timing of autonomous vehicles: innovation diffusion approach

Author

Listed:
  • Ramin Shabanpour

    (University of Illinois at Chicago)

  • Ali Shamshiripour

    (University of Illinois at Chicago)

  • Abolfazl Mohammadian

    (University of Illinois at Chicago)

Abstract

Autonomous vehicles (AVs) are expected to act as an economically-disruptive transportation technology offering several benefits to the society and causing significant changes in travel behavior and network performance. However, one of the critical issues that policymakers are facing is the absence of a sound estimation of their market penetration. This study is an effort to quantify the effect of different drivers on the adoption timing of AVs. To this end, we develop an innovation diffusion model in which individuals’ propensities to adopt a new technology such as AVs takes influence from a desire to innovate and a need to imitate the rest of the society. It also captures various sources of inter-personal heterogeneity. We found that conditional on our assumptions regarding the changes in market price of AVs over time, their market penetration in our study region (Chicago metropolitan area) will eventually reach 71.3%. Further, model estimation results show that a wide range of socio-demographic factors, travel pattern indicators, technology awareness, and perceptions of AVs are influential in people’s AV adoption timing decision. For instance, frequent long-distance travelers are found to make the adoption decision more innovatively while those who have experienced an accident in their lifetime are found to be more influenced by word of mouth.

Suggested Citation

  • Ramin Shabanpour & Ali Shamshiripour & Abolfazl Mohammadian, 2018. "Modeling adoption timing of autonomous vehicles: innovation diffusion approach," Transportation, Springer, vol. 45(6), pages 1607-1621, November.
  • Handle: RePEc:kap:transp:v:45:y:2018:i:6:d:10.1007_s11116-018-9947-7
    DOI: 10.1007/s11116-018-9947-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-018-9947-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-018-9947-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David C. Schmittlein & Vijay Mahajan, 1982. "Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 1(1), pages 57-78.
    2. Islam, Towhidul & Meade, Nigel, 2012. "The impact of competition, and economic globalization on the multinational diffusion of 3G mobile phones," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 843-850.
    3. Roger M. Heeler & Thomas P. Hustad, 1980. "Problems in Predicting New Product Growth for Consumer Durables," Management Science, INFORMS, vol. 26(10), pages 1007-1020, October.
    4. Islam, Towhidul, 2014. "Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data," Energy Policy, Elsevier, vol. 65(C), pages 340-350.
    5. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    6. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    7. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    8. Zhang, Junyi & Kuwano, Masashi & Lee, Backjin & Fujiwara, Akimasa, 2009. "Modeling household discrete choice behavior incorporating heterogeneous group decision-making mechanisms," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 230-250, February.
    9. Nourinejad, Mehdi & Bahrami, Sina & Roorda, Matthew J., 2018. "Designing parking facilities for autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 110-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shari, Babajide Epe & Dioha, Michael O. & Abraham-Dukuma, Magnus C. & Sobanke, Victor O. & Emodi, Nnaemeka V., 2022. "Clean cooking energy transition in Nigeria: Policy implications for Developing countries," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 319-343.
    2. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    3. Wang, Song & Li, Zhixia & Wang, Yi & Aaron Wyatt, Daniel, 2022. "How do age and gender influence the acceptance of automated vehicles? – Revealing the hidden mediating effects from the built environment and personal factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 376-394.
    4. Jiang, Like & Chen, Haibo & Paschalidis, Evangelos, 2023. "Diffusion of connected and autonomous vehicles concerning mode choice, policy interventions and sustainability impacts: A system dynamics modelling study," Transport Policy, Elsevier, vol. 141(C), pages 274-290.
    5. Boddupalli, Sreekar-Shashank & Garrow, Laurie A. & German, Brian J. & Newman, Jeffrey P., 2024. "Mode choice modeling for an electric vertical takeoff and landing (eVTOL) air taxi commuting service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    6. Luo, Qi & Saigal, Romesh & Chen, Zhibin & Yin, Yafeng, 2019. "Accelerating the adoption of automated vehicles by subsidies: A dynamic games approach," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 226-243.
    7. Talebian, Ahmadreza & Mishra, Sabyasachee, 2022. "Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    8. Ishant Sharma & Sabyasachee Mishra, 2023. "Ranking preferences towards adopting autonomous vehicles based on peer inputs and advertisements," Transportation, Springer, vol. 50(6), pages 2139-2192, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    2. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
    3. Scaglione, Miriam & Giovannetti, Emanuele & Hamoudia, Mohsen, 2015. "The diffusion of mobile social networking: Exploring adoption externalities in four G7 countries," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1159-1170.
    4. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    5. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    6. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    7. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    8. Islam, Towhidul & Meade, Nigel, 2015. "Firm level innovation diffusion of 3G mobile connections in international context," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1138-1152.
    9. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    10. Hlavinka, Alexander N. & Mjelde, James W. & Dharmasena, Senarath & Holland, Christine, 2016. "Forecasting the adoption of residential ductless heat pumps," Energy Economics, Elsevier, vol. 54(C), pages 60-67.
    11. Lee, Hakyeon & Kim, Sang Gook & Park, Hyun-woo & Kang, Pilsung, 2014. "Pre-launch new product demand forecasting using the Bass model: A statistical and machine learning-based approach," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 49-64.
    12. Islam, Towhidul, 2014. "Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data," Energy Policy, Elsevier, vol. 65(C), pages 340-350.
    13. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    14. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    15. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    16. Kim, Namwoon & Srivastava, Rajendra K., 2007. "Modeling cross-price effects on inter-category dynamics: The case of three computing platforms," Omega, Elsevier, vol. 35(3), pages 290-301, June.
    17. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    18. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
    19. Liu, Xueying & Madlener, Reinhard, 2019. "Get Ready for Take-Off: A Two-Stage Model of Aircraft Market Diffusion," FCN Working Papers 15/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    20. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:45:y:2018:i:6:d:10.1007_s11116-018-9947-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.