A generalized product adoption model under random marketing conditions
Author
Abstract
Suggested Citation
DOI: 10.1007/s13198-024-02499-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- David C. Schmittlein & Vijay Mahajan, 1982. "Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 1(1), pages 57-78.
- Boswijk, H. Peter & Franses, Philip Hans, 2005.
"On the Econometrics of the Bass Diffusion Model,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 255-268, July.
- Boswijk, H.P. & Franses, Ph.H.B.F., 2002. "The Econometrics Of The Bass Diffusion Model," ERIM Report Series Research in Management ERS-2002-66-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Shun-Chen Niu, 2002. "A Stochastic Formulation of the Bass Model of New-Product Diffusion," Review of Marketing Science Working Papers 1-4-1000, Berkeley Electronic Press.
- Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
- Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
- Qin, Ruwen & Nembhard, David A., 2012. "Demand modeling of stochastic product diffusion over the life cycle," International Journal of Production Economics, Elsevier, vol. 137(2), pages 201-210.
- Laciana, Carlos E. & Oteiza-Aguirre, Nicolás, 2014. "An agent based multi-optional model for the diffusion of innovations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 254-265.
- Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
- V. Srinivasan & Charlotte H. Mason, 1986. "Technical Note—Nonlinear Least Squares Estimation of New Product Diffusion Models," Marketing Science, INFORMS, vol. 5(2), pages 169-178.
- Chien, Chen-Fu & Chen, Yun-Ju & Peng, Jin-Tang, 2010. "Manufacturing intelligence for semiconductor demand forecast based on technology diffusion and product life cycle," International Journal of Production Economics, Elsevier, vol. 128(2), pages 496-509, December.
- Najmeh Madadi & Azanizawati Ma’aram & Kuan Yew Wong, 2017. "A simulation-based product diffusion forecasting method using geometric Brownian motion and spline interpolation," Cogent Business & Management, Taylor & Francis Journals, vol. 4(1), pages 1300992-130, January.
- Jain, Dipak C & Rao, Ram C, 1990. "Effect of Price on the Demand for Durables: Modeling, Estimation, and Findings," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 163-170, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
- Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
- Shun-Chen Niu, 2006. "A Piecewise-Diffusion Model of New-Product Demands," Operations Research, INFORMS, vol. 54(4), pages 678-695, August.
- Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
- Najmeh Madadi & Azanizawati Ma’aram & Kuan Yew Wong, 2017. "A simulation-based product diffusion forecasting method using geometric Brownian motion and spline interpolation," Cogent Business & Management, Taylor & Francis Journals, vol. 4(1), pages 1300992-130, January.
- Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
- Massiani, Jérôme & Gohs, Andreas, 2015.
"The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies,"
Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
- Jérôme Massiani & Andreas Gohs, 2016. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Working Papers 2016: 37, Department of Economics, University of Venice "Ca' Foscari".
- Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
- Rajkumar Venkatesan & Trichy V. Krishnan & V. Kumar, 2004. "Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares," Marketing Science, INFORMS, vol. 23(3), pages 451-464, August.
- Hlavinka, Alexander N. & Mjelde, James W. & Dharmasena, Senarath & Holland, Christine, 2016. "Forecasting the adoption of residential ductless heat pumps," Energy Economics, Elsevier, vol. 54(C), pages 60-67.
- Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
- Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
- Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
- Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
- Negahban, Ashkan & Smith, Jeffrey S., 2018. "Optimal production-sales policies and entry time for successive generations of new products," International Journal of Production Economics, Elsevier, vol. 199(C), pages 220-232.
- Fernández-Durán, J.J., 2014. "Modeling seasonal effects in the Bass Forecasting Diffusion Model," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 251-264.
- Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
- Yuri Peers & Dennis Fok & Philip Hans Franses, 2012.
"Modeling Seasonality in New Product Diffusion,"
Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
- Peers, Y. & Fok, D. & Franses, Ph.H.B.F., 2010. "Modeling Seasonality in New Product Diffusion," ERIM Report Series Research in Management ERS-2010-029-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Kim, Namwoon & Srivastava, Rajendra K., 2007. "Modeling cross-price effects on inter-category dynamics: The case of three computing platforms," Omega, Elsevier, vol. 35(3), pages 290-301, June.
- Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
More about this item
Keywords
Random marketing conditions; Innovation diffusion model; Exponential distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-024-02499-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.