IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v11y2021i2p21582440211026954.html
   My bibliography  Save this article

Novel Optimization-Based Parameter Estimation Method for the Bass Diffusion Model

Author

Listed:
  • Lang Liang

Abstract

The Bass model is the most popular model for forecasting the diffusion process of a new product. However, the controlling parameters in it are unknown in practice and need to be determined in advance. Currently, the estimation of the controlling parameters has been approached by various techniques. In this case, a novel optimization-based parameter estimation (OPE) method for the Bass model is proposed in the theoretical framework of system dynamics ( SD ). To do this, the SD model of the Bass differential equation is first established and then the corresponding optimization mathematical model is formulated by introducing the controlling parameters as design variable and the discrepancy of the adopter function to the reference value as objective function. Using the VENSIM software, the present SD optimization model is solved, and its effectiveness and accuracy are demonstrated by two examples: one involves the exact solution and another is related to the actual user diffusion problem from Chinese Mobile. The results show that the present OPE method can produce higher predicting accuracy of the controlling parameters than the nonlinear weighted least squares method and the genetic algorithms. Moreover, the reliability interval of the estimated parameters and the goodness of fitting of the optimal results are given as well to further demonstrate the accuracy of the present OPE method.

Suggested Citation

  • Lang Liang, 2021. "Novel Optimization-Based Parameter Estimation Method for the Bass Diffusion Model," SAGE Open, , vol. 11(2), pages 21582440211, June.
  • Handle: RePEc:sae:sagope:v:11:y:2021:i:2:p:21582440211026954
    DOI: 10.1177/21582440211026954
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/21582440211026954
    Download Restriction: no

    File URL: https://libkey.io/10.1177/21582440211026954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barlas, Yaman, 1989. "Multiple tests for validation of system dynamics type of simulation models," European Journal of Operational Research, Elsevier, vol. 42(1), pages 59-87, September.
    2. Xiaoyu Li & Jiahong Yuan & Yan Shi & Tianteng Wang & Xiangpei Hu & Felix Tung Sun Chan & Junhu Ruan, 2020. "An extended Bass Model on consumer quantity of B2C commerce platforms," Electronic Commerce Research, Springer, vol. 20(3), pages 609-628, September.
    3. David C. Schmittlein & Vijay Mahajan, 1982. "Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 1(1), pages 57-78.
    4. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    5. Guo, Xuezhen, 2014. "A novel Bass-type model for product life cycle quantification using aggregate market data," International Journal of Production Economics, Elsevier, vol. 158(C), pages 208-216.
    6. Lim, Jinyang & Nam, Changi & Kim, Seongcheol & Rhee, Hongjai & Lee, Euehun & Lee, Hongkyu, 2012. "Forecasting 3G mobile subscription in China: A study based on stochastic frontier analysis and a Bass diffusion model," Telecommunications Policy, Elsevier, vol. 36(10), pages 858-871.
    7. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
    8. Pannhorst, Matthias & Dost, Florian, 2019. "Marketing innovations to old-age consumers: A dynamic Bass model for different life stages," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 315-327.
    9. Fan, Zhi-Ping & Che, Yu-Jie & Chen, Zhen-Yu, 2017. "Product sales forecasting using online reviews and historical sales data: A method combining the Bass model and sentiment analysis," Journal of Business Research, Elsevier, vol. 74(C), pages 90-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tianyu & Dong, Peiwu & Zeng, Yongchao & Ju, Yanbing, 2022. "Analyzing the diffusion of competitive smart wearable devices: An agent-based multi-dimensional relative agreement model," Journal of Business Research, Elsevier, vol. 139(C), pages 90-105.
    2. Negahban, Ashkan & Smith, Jeffrey S., 2018. "Optimal production-sales policies and entry time for successive generations of new products," International Journal of Production Economics, Elsevier, vol. 199(C), pages 220-232.
    3. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    4. Torres, Juan Pablo & Barrera, Jose Ignacio & Kunc, Martin & Charters, Steve, 2021. "The dynamics of wine tourism adoption in Chile," Journal of Business Research, Elsevier, vol. 127(C), pages 474-485.
    5. Kim, Namwoon & Srivastava, Rajendra K., 2007. "Modeling cross-price effects on inter-category dynamics: The case of three computing platforms," Omega, Elsevier, vol. 35(3), pages 290-301, June.
    6. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    7. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
    8. Philipp Wunderlich & Andreas Größler & Nicole Zimmermann & Jac A. M. Vennix, 2014. "Managerial influence on the diffusion of innovations within intra-organizational networks," System Dynamics Review, System Dynamics Society, vol. 30(3), pages 161-185, July.
    9. Islam, Towhidul & Meade, Nigel, 2000. "Modelling diffusion and replacement," European Journal of Operational Research, Elsevier, vol. 125(3), pages 551-570, September.
    10. Samuel Bjork & Avner Offer & Gabriel Söderberg, 2014. "Time series citation data: the Nobel Prize in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 185-196, January.
    11. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    12. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    13. Gómez Vilchez, Jonatan J. & Jochem, Patrick, 2019. "Simulating vehicle fleet composition: A review of system dynamics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Eryarsoy, Enes & Delen, Dursun & Davazdahemami, Behrooz & Topuz, Kazim, 2021. "A novel diffusion-based model for estimating cases, and fatalities in epidemics: The case of COVID-19," Journal of Business Research, Elsevier, vol. 124(C), pages 163-178.
    15. Olivier Toubia & Jacob Goldenberg & Rosanna Garcia, 2014. "Improving Penetration Forecasts Using Social Interactions Data," Management Science, INFORMS, vol. 60(12), pages 3049-3066, December.
    16. Nirupam Mukhopadhyay & Narayan Chandra Nayak, 2024. "Catalyzing change: a cross-country perspective on diffusion patterns of green innovation," Environment Systems and Decisions, Springer, vol. 44(4), pages 853-871, December.
    17. Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
    18. Lee, Hakyeon & Kim, Sang Gook & Park, Hyun-woo & Kang, Pilsung, 2014. "Pre-launch new product demand forecasting using the Bass model: A statistical and machine learning-based approach," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 49-64.
    19. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2021. "Predicting diffusion dynamics and launch time strategy for mobile telecommunication services: an empirical analysis," Information Technology and Management, Springer, vol. 22(1), pages 33-51, March.
    20. Shun-Chen Niu, 2006. "A Piecewise-Diffusion Model of New-Product Demands," Operations Research, INFORMS, vol. 54(4), pages 678-695, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:11:y:2021:i:2:p:21582440211026954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.