IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v50y2015icp17-28.html
   My bibliography  Save this article

The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies

Author

Listed:
  • Massiani, Jérôme
  • Gohs, Andreas

Abstract

Bass diffusion models are one of the competing paradigms to forecast the diffusion of innovative products or technologies. This approach posits that diffusion patterns can be modeled through two mechanisms: Innovators adopt the new product and imitators purchase the new product when getting in contact with existing users. Crucial for the implementation of the method are the values assigned to the two parameters, usually referred to as p and q, which mathematically describe innovation and imitation mechanisms. The present paper is based on the findings of a research project about policy measures to promote the diffusion of Electric Vehicles in Germany. It investigates how practitioners could choose adequate values for the Bass model parameters to forecast new automotive technologies diffusion with a focus on Electric Vehicles. It considers parameters provided by the literature as well as ad hoc parameter estimations based on real market data for Germany. Our investigation suggests that researchers may be in trouble in electing adequate parameter values since the different eligible parameter values exhibit dramatic variations. Literature values appear discussible and widely variable while ad hoc estimates appear poorly conclusive. A serious problem is that ad-hoc estimates of the Bass p value are highly sensitive to the assumed market potential M. So for plausible values of M, p varies on a high scale. Unless more consolidation takes place in this area, or more confidence can be placed on ad hoc estimates, these findings issue a warning for the users of such approaches and on the policy recommendations that would derive from their use.

Suggested Citation

  • Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
  • Handle: RePEc:eee:retrec:v:50:y:2015:i:c:p:17-28
    DOI: 10.1016/j.retrec.2015.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885915000220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2015.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. David C. Schmittlein & Vijay Mahajan, 1982. "Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 1(1), pages 57-78.
    2. Boswijk, H. Peter & Franses, Philip Hans, 2005. "On the Econometrics of the Bass Diffusion Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 255-268, July.
    3. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    4. Roger M. Heeler & Thomas P. Hustad, 1980. "Problems in Predicting New Product Growth for Consumer Durables," Management Science, INFORMS, vol. 26(10), pages 1007-1020, October.
    5. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    6. Park, Sang Yong & Kim, Jong Wook & Lee, Duk Hee, 2011. "Development of a market penetration forecasting model for Hydrogen Fuel Cell Vehicles considering infrastructure and cost reduction effects," Energy Policy, Elsevier, vol. 39(6), pages 3307-3315, June.
    7. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    8. Rajkumar Venkatesan & Trichy V. Krishnan & V. Kumar, 2004. "Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares," Marketing Science, INFORMS, vol. 23(3), pages 451-464, August.
    9. Lee, Duk Hee & Park, Sang Yong & Kim, Jong Wook & Lee, Seong Kon, 2013. "Analysis on the feedback effect for the diffusion of innovative technologies focusing on the green car," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 498-509.
    10. Hyman, Michael R., 1988. "The timeliness problem in the application of bass-type new product-growth models to durable sales forecasting," Journal of Business Research, Elsevier, vol. 16(1), pages 31-47, January.
    11. Christophe Van den Bulte & Gary L. Lilien, 1997. "Bias and Systematic Change in the Parameter Estimates of Macro-Level Diffusion Models," Marketing Science, INFORMS, vol. 16(4), pages 338-353.
    12. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    13. Massiani, Jérôme, 2015. "Cost-Benefit Analysis of policies for the development of electric vehicles in Germany: Methods and results," Transport Policy, Elsevier, vol. 38(C), pages 19-26.
    14. van den Bulte, C. & Stremersch, S., 2003. "Contagion and heterogeneity in new product diffusion: An emperical test," ERIM Report Series Research in Management ERS-2003-077-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Frank M. Bass, 2004. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 50(12_supple), pages 1825-1832, December.
    16. J?rome Massiani, 2012. "Using Stated Preferences to Forecast the Market Diffusion of Alternative Fuel Vehicles," SCIENZE REGIONALI, FrancoAngeli Editore, vol. 2012(3), pages 93-121.
    17. V. Srinivasan & Charlotte H. Mason, 1986. "Technical Note—Nonlinear Least Squares Estimation of New Product Diffusion Models," Marketing Science, INFORMS, vol. 5(2), pages 169-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    2. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    3. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    4. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    5. Hong, Jungsik & Koo, Hoonyoung & Kim, Taegu, 2016. "Easy, reliable method for mid-term demand forecasting based on the Bass model: A hybrid approach of NLS and OLS," European Journal of Operational Research, Elsevier, vol. 248(2), pages 681-690.
    6. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
    7. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    8. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    9. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    10. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    11. Lemmens, A. & Croux, C. & Stremersch, S., 2012. "Dynamics in international market segmentation of new product growth," Other publications TiSEM 306086bd-670f-48d2-97d1-3, Tilburg University, School of Economics and Management.
    12. Hlavinka, Alexander N. & Mjelde, James W. & Dharmasena, Senarath & Holland, Christine, 2016. "Forecasting the adoption of residential ductless heat pumps," Energy Economics, Elsevier, vol. 54(C), pages 60-67.
    13. Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
    14. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
    15. Christophe Van den Bulte & Yogesh V. Joshi, 2007. "New Product Diffusion with Influentials and Imitators," Marketing Science, INFORMS, vol. 26(3), pages 400-421, 05-06.
    16. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    17. Fernández-Durán, J.J., 2014. "Modeling seasonal effects in the Bass Forecasting Diffusion Model," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 251-264.
    18. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    19. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
    20. Sang-Gun Lee & Eui-bang Lee & Chang-Gyu Yang, 2014. "Strategies for ICT product diffusion: the case of the Korean mobile communications market," Service Business, Springer;Pan-Pacific Business Association, vol. 8(1), pages 65-81, March.

    More about this item

    Keywords

    Bass diffusion model; Innovation; Electric vehicles;
    All these keywords.

    JEL classification:

    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:50:y:2015:i:c:p:17-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.