IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i8p1873-1884.html
   My bibliography  Save this article

Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns

Author

Listed:
  • Laciana, Carlos E.
  • Rovere, Santiago L.
  • Podestá, Guillermo P.

Abstract

A micro-level agent-based model of innovation diffusion was developed that explicitly combines (a) an individual’s perception of the advantages or relative utility derived from adoption, and (b) social influence from members of the individual’s social network. The micro-model was used to simulate macro-level diffusion patterns emerging from different configurations of micro-model parameters. Micro-level simulation results matched very closely the adoption patterns predicted by the widely-used Bass macro-level model (Bass, 1969 [1]). For a portion of the p−q domain, results from micro-simulations were consistent with aggregate-level adoption patterns reported in the literature. Induced Bass macro-level parameters p and q responded to changes in micro-parameters: (1) p increased with the number of innovators and with the rate at which innovators are introduced; (2) q increased with the probability of rewiring in small-world networks, as the characteristic path length decreases; and (3) an increase in the overall perceived utility of an innovation caused a corresponding increase in induced p and q values. Understanding micro to macro linkages can inform the design and assessment of marketing interventions on micro-variables–or processes related to them–to enhance adoption of future products or technologies.

Suggested Citation

  • Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:8:p:1873-1884
    DOI: 10.1016/j.physa.2012.12.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112010898
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.12.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raghuram Iyengar & Christophe Van den Bulte & Thomas W. Valente, 2011. "Opinion Leadership and Social Contagion in New Product Diffusion," Marketing Science, INFORMS, vol. 30(2), pages 195-212, 03-04.
    2. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    3. David C. Schmittlein & Vijay Mahajan, 1982. "Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 1(1), pages 57-78.
    4. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    5. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    6. Peter N. Golder & Gerard J. Tellis, 2004. "Growing, Growing, Gone: Cascades, Diffusion, and Turning Points in the Product Life Cycle," Marketing Science, INFORMS, vol. 23(2), pages 207-218, December.
    7. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    8. Goldenberg, Jacob & Libai, Barak & Muller, Eitan, 2010. "The chilling effects of network externalities," International Journal of Research in Marketing, Elsevier, vol. 27(1), pages 4-15.
    9. Peter N. Golder & Gerard J. Tellis, 1997. "Will It Every Fly? Modeling the Takeoff of Really New Consumer Durables," Marketing Science, INFORMS, vol. 16(3), pages 256-270.
    10. Laciana, Carlos E. & Rovere, Santiago L., 2011. "Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1139-1149.
    11. Gadi Fibich & Ro'i Gibori, 2010. "Aggregate Diffusion Dynamics in Agent-Based Models with a Spatial Structure," Operations Research, INFORMS, vol. 58(5), pages 1450-1468, October.
    12. Lee, Sang-Gun & Trimi, Silvana & Kim, Changsoo, 2013. "The impact of cultural differences on technology adoption," Journal of World Business, Elsevier, vol. 48(1), pages 20-29.
    13. Rajkumar Venkatesan & Trichy V. Krishnan & V. Kumar, 2004. "Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares," Marketing Science, INFORMS, vol. 23(3), pages 451-464, August.
    14. Cynthia Nikolai & Gregory Madey, 2009. "Tools of the Trade: A Survey of Various Agent Based Modeling Platforms," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(2), pages 1-2.
    15. Fruchter, Gila E. & Van den Bulte, Christophe, 2011. "Why the Generalized Bass Model leads to odd optimal advertising policies," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 218-230.
    16. Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
    17. Robert Axtell & Robert Axelrod & Joshua M. Epstein & Michael D. Cohen, 1995. "Aligning Simulation Models: A Case Study and Results," Working Papers 95-07-065, Santa Fe Institute.
    18. Hubert Gatignon & Jehoshua Eliashberg & Thomas S. Robertson, 1989. "Modeling Multinational Diffusion Patterns: An Efficient Methodology," Marketing Science, INFORMS, vol. 8(3), pages 231-247.
    19. Rabik Ar Chatterjee & Jehoshua Eliashberg, 1990. "The Innovation Diffusion Process in a Heterogeneous Population: A Micromodeling Approach," Management Science, INFORMS, vol. 36(9), pages 1057-1079, September.
    20. Gerard J. Tellis & Stefan Stremersch & Eden Yin, 2003. "The International Takeoff of New Products: The Role of Economics, Culture, and Country Innovativeness," Marketing Science, INFORMS, vol. 22(2), pages 188-208, October.
    21. Gérard Weisbuch & Gérard Boudjema, 1999. "Dynamical Aspects in the Adoption of Agri-Environmental Measures," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 11-36.
    22. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    23. Lim, Byeong-Lak & Choi, Munkee & Park, Myeong-Cheol, 2003. "The late take-off phenomenon in the diffusion of telecommunication services: network effect and the critical mass," Information Economics and Policy, Elsevier, vol. 15(4), pages 537-557, December.
    24. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    25. Delre, S.A. & Jager, W. & Bijmolt, T.H.A. & Janssen, M.A., 2007. "Targeting and timing promotional activities: An agent-based model for the takeoff of new products," Journal of Business Research, Elsevier, vol. 60(8), pages 826-835, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Menezes, Mozart B.C. & da Silveira, Giovani J.C. & Guimarães, Renato, 2018. "Estimating demand variability and capacity costs due to social network influence: The hidden cost of connection," International Journal of Production Economics, Elsevier, vol. 197(C), pages 317-329.
    2. Laciana, C.E. & Gual, G. & Kalmus, D. & Oteiza-Aguirre, N. & Rovere, S.L., 2014. "Diffusion of two brands in competition: Cross-brand effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 104-115.
    3. Jimenez, Maritza & Franco, Carlos J. & Dyner, Isaac, 2016. "Diffusion of renewable energy technologies: The need for policy in Colombia," Energy, Elsevier, vol. 111(C), pages 818-829.
    4. Boateng, Mark K. & Awuah-Offei, Kwame, 2017. "Agent-based modeling framework for modeling the effect of information diffusion on community acceptance of mining," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 1-11.
    5. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    6. Laciana, Carlos E. & Oteiza-Aguirre, Nicolás, 2014. "An agent based multi-optional model for the diffusion of innovations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 254-265.
    7. Hang Xiong & Puqing Wang & Georgiy Bobashev, 2018. "Multiple peer effects in the diffusion of innovations on social networks: a simulation study," Journal of Innovation and Entrepreneurship, Springer, vol. 7(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    2. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    3. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    4. Nejad, Mohammad G. & Amini, Mehdi & Babakus, Emin, 2015. "Success Factors in Product Seeding: The Role of Homophily," Journal of Retailing, Elsevier, vol. 91(1), pages 68-88.
    5. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    6. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    7. Ashish Sood & Gareth M. James & Gerard J. Tellis, 2009. "Functional Regression: A New Model for Predicting Market Penetration of New Products," Marketing Science, INFORMS, vol. 28(1), pages 36-51, 01-02.
    8. Guseo, Renato & Guidolin, Mariangela, 2015. "Heterogeneity in diffusion of innovations modelling: A few fundamental types," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 514-524.
    9. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    10. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    11. Xiao, Yu & Han, Jingti, 2016. "Forecasting new product diffusion with agent-based models," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 167-178.
    12. Delre, S.A. & Jager, W. & Bijmolt, T.H.A. & Janssen, M.A., 2007. "Targeting and timing promotional activities: An agent-based model for the takeoff of new products," Journal of Business Research, Elsevier, vol. 60(8), pages 826-835, August.
    13. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    14. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    15. Lemmens, Aurélie & Croux, Christophe & Stremersch, Stefan, 2012. "Dynamics in the international market segmentation of new product growth," International Journal of Research in Marketing, Elsevier, vol. 29(1), pages 81-92.
    16. Shi, Xiaohui & Chumnumpan, Pattarin, 2019. "Modelling market dynamics of multi-brand and multi-generational products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 199-210.
    17. Shi, Xiaohui & Li, Feng & Bigdeli, Ali Ziaee, 2016. "An examination of NPD models in the context of business models," Journal of Business Research, Elsevier, vol. 69(7), pages 2541-2550.
    18. Guseo, Renato & Mortarino, Cinzia & Darda, Md Abud, 2015. "Homogeneous and heterogeneous diffusion models: Algerian natural gas production," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 366-378.
    19. Towhidul Islam & Nigel Meade, 2011. "Detecting the impact of market factors on sales takeoff times of analog cellular telephones," Marketing Letters, Springer, vol. 22(2), pages 197-212, June.
    20. Fernández-Durán, J.J., 2014. "Modeling seasonal effects in the Bass Forecasting Diffusion Model," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 251-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:8:p:1873-1884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.