IDEAS home Printed from https://ideas.repec.org/r/gam/jeners/v8y2015i4p3225-3244d48544.html
   My bibliography  Save this item

Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Junqiu & Wang, Yihe & Chen, Jianwen & Zhang, Xiaopeng, 2017. "Study on energy management strategy and dynamic modeling for auxiliary power units in range-extended electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 363-375.
  2. Wu, Peng & Partridge, Julius & Bucknall, Richard, 2020. "Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships," Applied Energy, Elsevier, vol. 275(C).
  3. Hyunhwa Kim & Junbeom Wi & Jiho Yoo & Hanho Son & Chiman Park & Hyunsoo Kim, 2018. "A Study on the Fuel Economy Potential of Parallel and Power Split Type Hybrid Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-19, August.
  4. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
  5. Huang, Yin & Kang, Zehao & Mao, Xuping & Hu, Haoqin & Tan, Jiaqi & Xuan, Dongji, 2023. "Deep reinforcement learning based energymanagement strategy considering running costs and energy source aging for fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 283(C).
  6. Zou, Runnan & Fan, Likang & Dong, Yanrui & Zheng, Siyu & Hu, Chenxing, 2021. "DQL energy management: An online-updated algorithm and its application in fix-line hybrid electric vehicle," Energy, Elsevier, vol. 225(C).
  7. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
  8. Zhang, Kaixuan & Ruan, Jiageng & Li, Tongyang & Cui, Hanghang & Wu, Changcheng, 2023. "The effects investigation of data-driven fitting cycle and deep deterministic policy gradient algorithm on energy management strategy of dual-motor electric bus," Energy, Elsevier, vol. 269(C).
  9. Jing Lian & Shuang Liu & Linhui Li & Xuanzuo Liu & Yafu Zhou & Fan Yang & Lushan Yuan, 2017. "A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC) Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs)," Energies, MDPI, vol. 10(1), pages 1-18, January.
  10. Huang, Ying & Wang, Shilong & Li, Ke & Fan, Zhuwei & Xie, Haiming & Jiang, Fachao, 2023. "Multi-parameter adaptive online energy management strategy for concrete truck mixers with a novel hybrid powertrain considering vehicle mass," Energy, Elsevier, vol. 277(C).
  11. Yao, Yongming & Wang, Jie & Zhou, Zhicong & Li, Hang & Liu, Huiying & Li, Tianyu, 2023. "Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles," Energy, Elsevier, vol. 262(PA).
  12. Yuping Zeng & Yang Cai & Changbao Chu & Guiyue Kou & Wei Gao, 2018. "Integrated Energy and Catalyst Thermal Management for Plug-In Hybrid Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-29, July.
  13. Hanho Son & Kyusik Park & Sungho Hwang & Hyunsoo Kim, 2017. "Design Methodology of a Power Split Type Plug-In Hybrid Electric Vehicle Considering Drivetrain Losses," Energies, MDPI, vol. 10(4), pages 1-18, March.
  14. Wang, Yue & Zeng, Xiaohua & Song, Dafeng & Yang, Nannan, 2019. "Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus," Energy, Elsevier, vol. 185(C), pages 1086-1099.
  15. Zhang, Yuanjian & Chu, Liang & Fu, Zicheng & Xu, Nan & Guo, Chong & Zhao, Di & Ou, Yang & Xu, Lei, 2020. "Energy management strategy for plug-in hybrid electric vehicle integrated with vehicle-environment cooperation control," Energy, Elsevier, vol. 197(C).
  16. Xu, Nan & Kong, Yan & Zhang, Yuanjian & Yue, Fenglai & Sui, Yan & Li, Xiaohan & Liu, Heng & Xu, Zhe, 2022. "Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy," Energy, Elsevier, vol. 251(C).
  17. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  18. Jinlong Hong & Liangchun Zhao & Yulong Lei & Bingzhao Gao, 2018. "Architecture Optimization of Hybrid Electric Vehicles with Future High-Efficiency Engine," Energies, MDPI, vol. 11(5), pages 1-23, May.
  19. Sun, Qirun & Wu, Zhi & Gu, Wei & Zhu, Tao & Zhong, Lei & Gao, Ting, 2021. "Flexible expansion planning of distribution system integrating multiple renewable energy sources: An approximate dynamic programming approach," Energy, Elsevier, vol. 226(C).
  20. Yoon Hyuk Shin & Seungkyu Sim & Sung Chul Kim, 2015. "Performance Characteristics of a Modularized and Integrated PTC Heating System for an Electric Vehicle," Energies, MDPI, vol. 9(1), pages 1-11, December.
  21. Hanho Son & Hyunsoo Kim, 2016. "Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses," Energies, MDPI, vol. 9(6), pages 1-18, May.
  22. Ruan, Jiageng & Wu, Changcheng & Liang, Zhaowen & Liu, Kai & Li, Bin & Li, Weihan & Li, Tongyang, 2023. "The application of machine learning-based energy management strategy in a multi-mode plug-in hybrid electric vehicle, part II: Deep deterministic policy gradient algorithm design for electric mode," Energy, Elsevier, vol. 269(C).
  23. Hsiu-Ying Hwang & Tian-Syung Lan & Jia-Shiun Chen, 2020. "Optimization and Application for Hydraulic Electric Hybrid Vehicle," Energies, MDPI, vol. 13(2), pages 1-17, January.
  24. Lin, Xinyou & Wu, Jiayun & Wei, Yimin, 2021. "An ensemble learning velocity prediction-based energy management strategy for a plug-in hybrid electric vehicle considering driving pattern adaptive reference SOC," Energy, Elsevier, vol. 234(C).
  25. Waruna Maddumage & Malika Perera & Rahula Attalage & Patrick Kelly, 2021. "Power Management Strategy of a Parallel Hybrid Three-Wheeler for Fuel and Emission Reduction," Energies, MDPI, vol. 14(7), pages 1-30, March.
  26. Wu, Changcheng & Ruan, Jiageng & Cui, Hanghang & Zhang, Bin & Li, Tongyang & Zhang, Kaixuan, 2023. "The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid ," Energy, Elsevier, vol. 262(PB).
  27. Ali Solouk & Mahdi Shahbakhti, 2016. "Energy Optimization and Fuel Economy Investigation of a Series Hybrid Electric Vehicle Integrated with Diesel/RCCI Engines," Energies, MDPI, vol. 9(12), pages 1-23, December.
  28. Yongpeng Shen & Zhendong He & Dongqi Liu & Binjie Xu, 2016. "Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model," Energies, MDPI, vol. 9(2), pages 1-18, February.
  29. Alena Vagaská & Miroslav Gombár & Ľuboslav Straka, 2022. "Selected Mathematical Optimization Methods for Solving Problems of Engineering Practice," Energies, MDPI, vol. 15(6), pages 1-22, March.
  30. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
  31. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
  32. Tobias Frambach & Ralf Kleisch & Ralf Liedtke & Jochen Schwarzer & Egbert Figgemeier, 2022. "Environmental Impact Assessment and Classification of 48 V Plug-in Hybrids with Real-Driving Use Case Simulations," Energies, MDPI, vol. 15(7), pages 1-21, March.
  33. Yuping Zeng & Yang Cai & Guiyue Kou & Wei Gao & Datong Qin, 2018. "Energy Management for Plug-In Hybrid Electric Vehicle Based on Adaptive Simplified-ECMS," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
  34. Lihe Xi & Xin Zhang & Chuanyang Sun & Zexing Wang & Xiaosen Hou & Jibao Zhang, 2017. "Intelligent Energy Management Control for Extended Range Electric Vehicles Based on Dynamic Programming and Neural Network," Energies, MDPI, vol. 10(11), pages 1-18, November.
  35. Yongjian Zhou & Rong Yang & Song Zhang & Kejun Lan & Wei Huang, 2023. "Optimization of Power-System Parameters and Energy-Management Strategy Research on Hybrid Heavy-Duty Trucks," Energies, MDPI, vol. 16(17), pages 1-21, August.
  36. Thomas Levermore & M. Necip Sahinkaya & Yahya Zweiri & Ben Neaves, 2016. "Real-Time Velocity Optimization to Minimize Energy Use in Passenger Vehicles," Energies, MDPI, vol. 10(1), pages 1-18, December.
  37. Yang Yang & Zhen Zhong & Fei Wang & Chunyun Fu & Junzhang Liao, 2020. "Real-time Energy Management Strategy for Oil-Electric-Liquid Hybrid System based on Lowest Instantaneous Energy Consumption Cost," Energies, MDPI, vol. 13(4), pages 1-23, February.
  38. Chun-Hsin Chang & Hsuan-Yung Chang & Yi-Hsuan Hung & Chien-Hsun Wu & Ji-Jia Xu, 2020. "System Designs and Experimental Assessment of a Seven-Mode Vehicle-Oriented Hybrid Powertrain Platform," Energies, MDPI, vol. 13(8), pages 1-20, April.
  39. Hsiu-Ying Hwang & Jia-Shiun Chen, 2020. "Optimized Fuel Economy Control of Power-Split Hybrid Electric Vehicle with Particle Swarm Optimization," Energies, MDPI, vol. 13(9), pages 1-18, May.
  40. Li, Gaopeng & Zhang, Jieli & He, Hongwen, 2017. "Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 194(C), pages 578-587.
  41. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
  42. Wu, Jingda & He, Hongwen & Peng, Jiankun & Li, Yuecheng & Li, Zhanjiang, 2018. "Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus," Applied Energy, Elsevier, vol. 222(C), pages 799-811.
  43. Hassanzadeh, Mojtaba & Rahmani, Zahra, 2022. "A predictive controller for real-time energy management of plug-in hybrid electric vehicles," Energy, Elsevier, vol. 249(C).
  44. Huang, Xuejin & Zhang, Jingyi & Ou, Kai & Huang, Yin & Kang, Zehao & Mao, Xuping & Zhou, Yujie & Xuan, Dongji, 2024. "Deep reinforcement learning-based health-conscious energy management for fuel cell hybrid electric vehicles in model predictive control framework," Energy, Elsevier, vol. 304(C).
  45. Xiao Hu & Shikun Liu & Ke Song & Yuan Gao & Tong Zhang, 2021. "Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health," Energies, MDPI, vol. 14(20), pages 1-20, October.
  46. Wang, Hong & Huang, Yanjun & Khajepour, Amir & Song, Qiang, 2016. "Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 182(C), pages 105-114.
  47. Chao-Wu Chou & Wen-Chih Liao & Simon Wu & Hui-Ming Wee, 2015. "The Role of Technical Innovation and Sustainability on Energy Consumption: A Case Study on the Taiwanese Automobile Industry," Energies, MDPI, vol. 8(7), pages 1-14, June.
  48. Kegang Zhao & Jinghao Bei & Yanwei Liu & Zhihao Liang, 2019. "Development of Global Optimization Algorithm for Series-Parallel PHEV Energy Management Strategy Based on Radau Pseudospectral Knotting Method," Energies, MDPI, vol. 12(17), pages 1-23, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.