IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6217-d1226299.html
   My bibliography  Save this article

Optimization of Power-System Parameters and Energy-Management Strategy Research on Hybrid Heavy-Duty Trucks

Author

Listed:
  • Yongjian Zhou

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Rong Yang

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Song Zhang

    (Guangxi Yuchai Machinery Company Limited, Yulin 537000, China)

  • Kejun Lan

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Wei Huang

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China)

Abstract

Hybrid heavy-duty trucks have attracted wide attention due to their excellent fuel economy and high mileage. For power-split hybrid heavy-duty trucks, the optimization of powertrain parameters is closely related to the control strategies of hybrid vehicles. In particular, the parameters of the powertrain system will directly affect the control of the vehicles’ power performance and economy. However, currently, research on hybrid heavy-duty trucks employing power-split configurations is lacking. Furthermore, few studies consider both the optimization of powertrain parameters and the control strategy at the same time to carry out comprehensive optimization research. In order to address these issues, this paper focuses on the fuel economy of hybrid heavy-duty trucks with power-split configurations. Improved particle swarm optimization (IPSO) and dynamic programming (DP) algorithms are introduced to optimize powertrain parameters. With these methods being applied, hybrid heavy-duty trucks show a 2.15% improvement in fuel consumption compared to that of the previous optimization. Moreover, based on the optimal powertrain parameters, a DP-based rule-control strategy (DP-RCS) and optimal DP-RCS scheme are presented and used in this paper to conduct our research. Simulation results show that the optimal DP-RCS reduces fuel consumption per hundred kilometers by 11.35% compared to the rule-based control strategy (RCS), demonstrating that the combination of powertrain parameter optimization and DP-RCS effectively improves the fuel economy of hybrid heavy-duty trucks.

Suggested Citation

  • Yongjian Zhou & Rong Yang & Song Zhang & Kejun Lan & Wei Huang, 2023. "Optimization of Power-System Parameters and Energy-Management Strategy Research on Hybrid Heavy-Duty Trucks," Energies, MDPI, vol. 16(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6217-:d:1226299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Yalian & Pei, Huanxin & Hu, Xiaosong & Liu, Yonggang & Hou, Cong & Cao, Dongpu, 2019. "Fuel economy optimization of power split hybrid vehicles: A rapid dynamic programming approach," Energy, Elsevier, vol. 166(C), pages 929-938.
    2. Ye Yang & Youtong Zhang & Jingyi Tian & Si Zhang, 2018. "Research on a Plug-In Hybrid Electric Bus Energy Management Strategy Considering Drivability," Energies, MDPI, vol. 11(8), pages 1-22, August.
    3. Wu, Jingda & He, Hongwen & Peng, Jiankun & Li, Yuecheng & Li, Zhanjiang, 2018. "Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus," Applied Energy, Elsevier, vol. 222(C), pages 799-811.
    4. Hu, Jiayi & Li, Jianqiu & Hu, Zunyan & Xu, Liangfei & Ouyang, Minggao, 2021. "Power distribution strategy of a dual-engine system for heavy-duty hybrid electric vehicles using dynamic programming," Energy, Elsevier, vol. 215(PA).
    5. Yang, Yalian & Hu, Xiaosong & Pei, Huanxin & Peng, Zhiyuan, 2016. "Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach," Applied Energy, Elsevier, vol. 168(C), pages 683-690.
    6. Hutchinson, Tim & Burgess, Stuart & Herrmann, Guido, 2014. "Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis," Applied Energy, Elsevier, vol. 119(C), pages 314-329.
    7. Tobias Nüesch & Philipp Elbert & Michael Flankl & Christopher Onder & Lino Guzzella, 2014. "Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs," Energies, MDPI, vol. 7(2), pages 1-23, February.
    8. Chen, Zeyu & Xiong, Rui & Cao, Jiayi, 2016. "Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions," Energy, Elsevier, vol. 96(C), pages 197-208.
    9. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
    10. Changqing Du & Shiyang Huang & Yuyao Jiang & Dongmei Wu & Yang Li, 2022. "Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 15(12), pages 1-25, June.
    11. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.
    12. Jingxian Hao & Zhuoping Yu & Zhiguo Zhao & Peihong Shen & Xiaowen Zhan, 2016. "Optimization of Key Parameters of Energy Management Strategy for Hybrid Electric Vehicle Using DIRECT Algorithm," Energies, MDPI, vol. 9(12), pages 1-24, November.
    13. Fuwu Yan & Jinhai Wang & Changqing Du & Min Hua, 2022. "Multi-Objective Energy Management Strategy for Hybrid Electric Vehicles Based on TD3 with Non-Parametric Reward Function," Energies, MDPI, vol. 16(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yue & Zeng, Xiaohua & Song, Dafeng & Yang, Nannan, 2019. "Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus," Energy, Elsevier, vol. 185(C), pages 1086-1099.
    2. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    3. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Xu, Nan & Kong, Yan & Zhang, Yuanjian & Yue, Fenglai & Sui, Yan & Li, Xiaohan & Liu, Heng & Xu, Zhe, 2022. "Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy," Energy, Elsevier, vol. 251(C).
    5. Pei, Huanxin & Hu, Xiaosong & Yang, Yalian & Tang, Xiaolin & Hou, Cong & Cao, Dongpu, 2018. "Configuration optimization for improving fuel efficiency of power split hybrid powertrains with a single planetary gear," Applied Energy, Elsevier, vol. 214(C), pages 103-116.
    6. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    7. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    8. Yang, Yalian & Pei, Huanxin & Hu, Xiaosong & Liu, Yonggang & Hou, Cong & Cao, Dongpu, 2019. "Fuel economy optimization of power split hybrid vehicles: A rapid dynamic programming approach," Energy, Elsevier, vol. 166(C), pages 929-938.
    9. Zou, Runnan & Fan, Likang & Dong, Yanrui & Zheng, Siyu & Hu, Chenxing, 2021. "DQL energy management: An online-updated algorithm and its application in fix-line hybrid electric vehicle," Energy, Elsevier, vol. 225(C).
    10. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Deng, Pengyi & Wu, Xiaohua & Zhang, Jiye, 2022. "Hierarchical energy management of a hybrid propulsion system considering speed profile optimization," Energy, Elsevier, vol. 244(PB).
    11. Huang, Ying & Wang, Shilong & Li, Ke & Fan, Zhuwei & Xie, Haiming & Jiang, Fachao, 2023. "Multi-parameter adaptive online energy management strategy for concrete truck mixers with a novel hybrid powertrain considering vehicle mass," Energy, Elsevier, vol. 277(C).
    12. Anselma, Pier Giuseppe, 2022. "Electrified powertrain sizing for vehicle fleets of car makers considering total ownership costs and CO2 emission legislation scenarios," Applied Energy, Elsevier, vol. 314(C).
    13. Zhou, Xingyu & Qin, Datong & Hu, Jianjun, 2017. "Multi-objective optimization design and performance evaluation for plug-in hybrid electric vehicle powertrains," Applied Energy, Elsevier, vol. 208(C), pages 1608-1625.
    14. Huijun Yue & Jinyu Lin & Peng Dong & Zhinan Chen & Xiangyang Xu, 2023. "Configurations and Control Strategies of Hybrid Powertrain Systems," Energies, MDPI, vol. 16(2), pages 1-18, January.
    15. Huang, Yin & Kang, Zehao & Mao, Xuping & Hu, Haoqin & Tan, Jiaqi & Xuan, Dongji, 2023. "Deep reinforcement learning based energymanagement strategy considering running costs and energy source aging for fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 283(C).
    16. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    17. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    18. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    19. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    20. Zeyu Chen & Jiahuan Lu & Bo Liu & Nan Zhou & Shijie Li, 2020. "Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries," Energies, MDPI, vol. 13(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6217-:d:1226299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.