IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p784-d319172.html
   My bibliography  Save this article

Real-time Energy Management Strategy for Oil-Electric-Liquid Hybrid System based on Lowest Instantaneous Energy Consumption Cost

Author

Listed:
  • Yang Yang

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
    School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Zhen Zhong

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
    School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Fei Wang

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
    School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Chunyun Fu

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
    School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Junzhang Liao

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
    School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

Abstract

For the oil–electric–hydraulic hybrid power system, a logic threshold energy management strategy based on the optimal working curve is proposed, and the optimal working curve in each mode is determined. A genetic algorithm is used to determine the optimal parameters. For driving conditions, a real-time energy management strategy based on the lowest instantaneous energy cost is proposed. For braking conditions and subject to the European Commission for Europe (ECE) regulations, a braking force distribution strategy based on hydraulic pumps/motors and supplemented by motors is proposed. A global optimization energy management strategy is used to evaluate the strategy. Simulation results show that the strategy can achieve the expected control target and save about 32.14% compared with the fuel consumption cost of the original model 100 km 8 L. Under the New European Driving Cycle (NEDC) working conditions, the energy-saving effect of this strategy is close to that of the global optimization energy management strategy and has obvious cost advantages. The system design and control strategy are validated.

Suggested Citation

  • Yang Yang & Zhen Zhong & Fei Wang & Chunyun Fu & Junzhang Liao, 2020. "Real-time Energy Management Strategy for Oil-Electric-Liquid Hybrid System based on Lowest Instantaneous Energy Consumption Cost," Energies, MDPI, vol. 13(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:784-:d:319172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subramaniam Saravana Sankar & Yiqun Xia & Julaluk Carmai & Saiprasit Koetniyom, 2020. "Optimal Eco-Driving Cycles for Conventional Vehicles Using a Genetic Algorithm," Energies, MDPI, vol. 13(17), pages 1-15, August.
    2. Jian Yang & Tiezhu Zhang & Hongxin Zhang & Jichao Hong & Zewen Meng, 2020. "Research on the Starting Acceleration Characteristics of a New Mechanical–Electric–Hydraulic Power Coupling Electric Vehicle," Energies, MDPI, vol. 13(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    2. Jing Lian & Shuang Liu & Linhui Li & Xuanzuo Liu & Yafu Zhou & Fan Yang & Lushan Yuan, 2017. "A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC) Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs)," Energies, MDPI, vol. 10(1), pages 1-18, January.
    3. Hanho Son & Hyunsoo Kim, 2016. "Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses," Energies, MDPI, vol. 9(6), pages 1-18, May.
    4. Hsiu-Ying Hwang & Tian-Syung Lan & Jia-Shiun Chen, 2020. "Optimization and Application for Hydraulic Electric Hybrid Vehicle," Energies, MDPI, vol. 13(2), pages 1-17, January.
    5. Tan, Yingqi & Xu, Jingyi & Ma, Junyi & Li, Zirui & Chen, Huiyan & Xi, Junqiang & Liu, Haiou, 2024. "A transferable perception-guided EMS for series hybrid electric unmanned tracked vehicles," Energy, Elsevier, vol. 306(C).
    6. Hsiu-Ying Hwang & Jia-Shiun Chen, 2020. "Optimized Fuel Economy Control of Power-Split Hybrid Electric Vehicle with Particle Swarm Optimization," Energies, MDPI, vol. 13(9), pages 1-18, May.
    7. Li, Junqiu & Wang, Yihe & Chen, Jianwen & Zhang, Xiaopeng, 2017. "Study on energy management strategy and dynamic modeling for auxiliary power units in range-extended electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 363-375.
    8. Wang, Yue & Zeng, Xiaohua & Song, Dafeng & Yang, Nannan, 2019. "Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus," Energy, Elsevier, vol. 185(C), pages 1086-1099.
    9. Wu, Changcheng & Ruan, Jiageng & Cui, Hanghang & Zhang, Bin & Li, Tongyang & Zhang, Kaixuan, 2023. "The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid ," Energy, Elsevier, vol. 262(PB).
    10. Zhang, Yuanjian & Chu, Liang & Fu, Zicheng & Xu, Nan & Guo, Chong & Zhao, Di & Ou, Yang & Xu, Lei, 2020. "Energy management strategy for plug-in hybrid electric vehicle integrated with vehicle-environment cooperation control," Energy, Elsevier, vol. 197(C).
    11. Hassanzadeh, Mojtaba & Rahmani, Zahra, 2022. "A predictive controller for real-time energy management of plug-in hybrid electric vehicles," Energy, Elsevier, vol. 249(C).
    12. Yongpeng Shen & Zhendong He & Dongqi Liu & Binjie Xu, 2016. "Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model," Energies, MDPI, vol. 9(2), pages 1-18, February.
    13. Tobias Frambach & Ralf Kleisch & Ralf Liedtke & Jochen Schwarzer & Egbert Figgemeier, 2022. "Environmental Impact Assessment and Classification of 48 V Plug-in Hybrids with Real-Driving Use Case Simulations," Energies, MDPI, vol. 15(7), pages 1-21, March.
    14. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    15. Yao, Yongming & Wang, Jie & Zhou, Zhicong & Li, Hang & Liu, Huiying & Li, Tianyu, 2023. "Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles," Energy, Elsevier, vol. 262(PA).
    16. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
    17. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    18. Lihe Xi & Xin Zhang & Chuanyang Sun & Zexing Wang & Xiaosen Hou & Jibao Zhang, 2017. "Intelligent Energy Management Control for Extended Range Electric Vehicles Based on Dynamic Programming and Neural Network," Energies, MDPI, vol. 10(11), pages 1-18, November.
    19. Thomas Levermore & M. Necip Sahinkaya & Yahya Zweiri & Ben Neaves, 2016. "Real-Time Velocity Optimization to Minimize Energy Use in Passenger Vehicles," Energies, MDPI, vol. 10(1), pages 1-18, December.
    20. Xiao Hu & Shikun Liu & Ke Song & Yuan Gao & Tong Zhang, 2021. "Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health," Energies, MDPI, vol. 14(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:784-:d:319172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.