IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224015421.html
   My bibliography  Save this article

Deep reinforcement learning-based health-conscious energy management for fuel cell hybrid electric vehicles in model predictive control framework

Author

Listed:
  • Huang, Xuejin
  • Zhang, Jingyi
  • Ou, Kai
  • Huang, Yin
  • Kang, Zehao
  • Mao, Xuping
  • Zhou, Yujie
  • Xuan, Dongji

Abstract

The main contribution of this study is to introduce deep reinforcement learning (DRL) within the model prediction control (MPC) framework, and consider comprehensive economic objectives including fuel cell degradation costs, lithium battery aging costs, hydrogen consumption costs, etc. This approach successfully mitigated the inherent shortcomings of deep reinforcement learning, namely poor generalization and lack of adaptability, thereby significantly enhancing the robustness of economic driving decision in unknown scenarios. In this study, an MPC framework was developed for the energy management problem of fuel cell vehicles, and Bi-directional Long Short-Term Memory (Bi-LSTM) neural network was used to construct a vehicle speed predictor The accuracy of its prediction was verified through comparative analysis, and then it was regarded as a DRL model. Different from the overall strategy of the entire driving cycle, the model based DRL agent can learn the optimal action for each vehicle state. The simulation evaluated the impact of different predictors and prediction ranges on hydrogen economy, and verified the adaptability of the proposed strategy in different driving environments, the stability of battery state maintenance, and the advantages of delaying energy system degradation through comprehensive comparative analysis.

Suggested Citation

  • Huang, Xuejin & Zhang, Jingyi & Ou, Kai & Huang, Yin & Kang, Zehao & Mao, Xuping & Zhou, Yujie & Xuan, Dongji, 2024. "Deep reinforcement learning-based health-conscious energy management for fuel cell hybrid electric vehicles in model predictive control framework," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224015421
    DOI: 10.1016/j.energy.2024.131769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224015421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.