IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v79y2017icp1275-1284.html
   My bibliography  Save this item

Large heat pumps in Swedish district heating systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mitterrutzner, Benjamin & Callegher, Claudio Zandonella & Fraboni, Riccardo & Wilczynski, Eric & Pezzutto, Simon, 2023. "Review of heating and cooling technologies for buildings: A techno-economic case study of eleven European countries," Energy, Elsevier, vol. 284(C).
  2. Rakesh Sinha & Birgitte Bak-Jensen & Jayakrishnan Radhakrishna Pillai, 2019. "Autonomous Controller for Flexible Operation of Heat Pumps in Low-Voltage Distribution Network," Energies, MDPI, vol. 12(8), pages 1-19, April.
  3. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2020. "Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat," Applied Energy, Elsevier, vol. 269(C).
  4. Andersen, Anders N. & Østergaard, Poul Alberg, 2018. "A method for assessing support schemes promoting flexibility at district energy plants," Applied Energy, Elsevier, vol. 225(C), pages 448-459.
  5. Tomi Thomasson & Kirsikka Kiviranta & Antton Tapani & Matti Tähtinen, 2021. "Flexibility from Combined Heat and Power: A Techno-Economic Study for Fully Renewable Åland Islands," Energies, MDPI, vol. 14(19), pages 1-19, October.
  6. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
  7. Sernhed, Kerstin & Lygnerud, Kristina & Werner, Sven, 2018. "Synthesis of recent Swedish district heating research," Energy, Elsevier, vol. 151(C), pages 126-132.
  8. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
  9. Yang, Xiaochen & Svendsen, Svend, 2018. "Ultra-low temperature district heating system with central heat pump and local boosters for low-heat-density area: Analyses on a real case in Denmark," Energy, Elsevier, vol. 159(C), pages 243-251.
  10. Fernqvist, Niklas & Broberg, Sarah & Torén, Johan & Svensson, Inger-Lise, 2023. "District heating as a flexibility service: Challenges in sector coupling for increased solar and wind power production in Sweden," Energy Policy, Elsevier, vol. 172(C).
  11. Allouhi, Amine, 2022. "Techno-economic and environmental accounting analyses of an innovative power-to-heat concept based on solar PV systems and a geothermal heat pump," Renewable Energy, Elsevier, vol. 191(C), pages 649-661.
  12. Giulia Spirito & Alice Dénarié & Fabrizio Fattori & Mario Motta & Samuel Macchi & Urban Persson, 2021. "Potential Diffusion of Renewables-Based DH Assessment through Clustering and Mapping: A Case Study in Milano," Energies, MDPI, vol. 14(9), pages 1-30, May.
  13. Nannan Wang & Xiaoyan Chen & Guobin Wu, 2019. "Public Private Partnerships, a Value for Money Solution for Clean Coal District Heating Operations," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
  14. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2019. "Cost sensitivity of optimal sector-coupled district heating production systems," Energy, Elsevier, vol. 166(C), pages 624-636.
  15. Yang, Bo & Jiang, Yi & Fu, Lin & Zhang, Shigang, 2018. "Modular simulation of cogeneration system based on absorption heat exchange (Co-ah)," Energy, Elsevier, vol. 153(C), pages 369-386.
  16. Milana Treshcheva & Irina Anikina & Vitaly Sergeev & Sergey Skulkin & Dmitry Treshchev, 2021. "Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions," Energies, MDPI, vol. 14(1), pages 1-25, January.
  17. Beatriz María Paredes-Sánchez & José Pablo Paredes & Natalia Caparrini & Elena Rivo-López, 2021. "Analysis of District Heating and Cooling Energy Systems in Spain: Resources, Technology and Management," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
  18. Yang, Bo & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Wei, Maolin & Guo, Dongcai, 2020. "Techno-economic study of full-open absorption heat pump applied to flue gas total heat recovery," Energy, Elsevier, vol. 190(C).
  19. Liang Tian & Yunlei Xie & Bo Hu & Xinping Liu & Tuoyu Deng & Huanhuan Luo & Fengqiang Li, 2019. "A Deep Peak Regulation Auxiliary Service Bidding Strategy for CHP Units Based on a Risk-Averse Model and District Heating Network Energy Storage," Energies, MDPI, vol. 12(17), pages 1-27, August.
  20. Oh, Saesin & Kim, Sang-Kee, 2022. "Impact of heat price regulation on the optimal district heating production mix and its policy implications," Energy, Elsevier, vol. 239(PD).
  21. Lygnerud, Kristina & Ottosson, Jonas & Kensby, Johan & Johansson, Linnea, 2021. "Business models combining heat pumps and district heating in buildings generate cost and emission savings," Energy, Elsevier, vol. 234(C).
  22. Pang, Simian & Zheng, Zixuan & Xiao, Xianyong & Huang, Chunjun & Zhang, Shu & Li, Jie & Zong, Yi & You, Shi, 2022. "Collaborative power tracking method of diversified thermal loads for optimal demand response: A MILP-Based decomposition algorithm," Applied Energy, Elsevier, vol. 327(C).
  23. Verena Weiler & Jonas Stave & Ursula Eicker, 2019. "Renewable Energy Generation Scenarios Using 3D Urban Modeling Tools—Methodology for Heat Pump and Co-Generation Systems with Case Study Application †," Energies, MDPI, vol. 12(3), pages 1-19, January.
  24. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
  25. Meesenburg, Wiebke & Markussen, Wiebke Brix & Ommen, Torben & Elmegaard, Brian, 2020. "Optimizing control of two-stage ammonia heat pump for fast regulation of power uptake," Applied Energy, Elsevier, vol. 271(C).
  26. Gravelsins, Armands & Pakere, Ieva & Tukulis, Anrijs & Blumberga, Dagnija, 2019. "Solar power in district heating. P2H flexibility concept," Energy, Elsevier, vol. 181(C), pages 1023-1035.
  27. Liu, Ming & Ma, Guofeng & Wang, Shan & Wang, Yu & Yan, Junjie, 2021. "Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  28. Åberg, Magnus & Lingfors, David & Olauson, Jon & Widén, Joakim, 2019. "Can electricity market prices control power-to-heat production for peak shaving of renewable power generation? The case of Sweden," Energy, Elsevier, vol. 176(C), pages 1-14.
  29. Andersen, Anders N. & Østergaard, Poul Alberg, 2020. "Support schemes adapting district energy combined heat and power for the role as a flexibility provider in renewable energy systems," Energy, Elsevier, vol. 192(C).
  30. Abas, Naeem & Kalair, Ali Raza & Khan, Nasrullah & Haider, Aun & Saleem, Zahid & Saleem, Muhammad Shoaib, 2018. "Natural and synthetic refrigerants, global warming: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 557-569.
  31. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
  32. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  33. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  34. Narula, Kapil & Chambers, Jonathan & Streicher, Kai N. & Patel, Martin K., 2019. "Strategies for decarbonising the Swiss heating system," Energy, Elsevier, vol. 169(C), pages 1119-1131.
  35. Pereverza, Kateryna & Pasichnyi, Oleksii & Kordas, Olga, 2019. "Modular participatory backcasting: A unifying framework for strategic planning in the heating sector," Energy Policy, Elsevier, vol. 124(C), pages 123-134.
  36. Popovski, Eftim & Aydemir, Ali & Fleiter, Tobias & Bellstädt, Daniel & Büchele, Richard & Steinbach, Jan, 2019. "The role and costs of large-scale heat pumps in decarbonising existing district heating networks – A case study for the city of Herten in Germany," Energy, Elsevier, vol. 180(C), pages 918-933.
  37. Ahmadisedigh, Hossein & Gosselin, Louis, 2019. "Combined heating and cooling networks with waste heat recovery based on energy hub concept," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  38. Moser, Simon & Mayrhofer, Julia & Schmidt, Ralf-Roman & Tichler, Robert, 2018. "Socioeconomic cost-benefit-analysis of seasonal heat storages in district heating systems with industrial waste heat integration," Energy, Elsevier, vol. 160(C), pages 868-874.
  39. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  40. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Zhou, Bo & Guan, Qinyue & Tan, Jin & Lin, Zhongwei & Fang, Fang, 2022. "Day-ahead stochastic scheduling of integrated electricity and heat system considering reserve provision by large-scale heat pumps," Applied Energy, Elsevier, vol. 307(C).
  41. Grohnheit, Poul Erik & Sneum, Daniel Møller, 2023. "Calm before the storm: Market prices in a power market with an increasing share of wind power," Energy Policy, Elsevier, vol. 179(C).
  42. Aguilera, José Joaquín & Meesenburg, Wiebke & Ommen, Torben & Markussen, Wiebke Brix & Poulsen, Jonas Lundsted & Zühlsdorf, Benjamin & Elmegaard, Brian, 2022. "A review of common faults in large-scale heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  43. Mariusz Szreder & Marek Miara, 2020. "Impact of Compressor Drive System Efficiency on Air Source Heat Pump Performance for Heating Hot Water," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
  44. Robert Fischer & Erik Elfgren & Andrea Toffolo, 2020. "Towards Optimal Sustainable Energy Systems in Nordic Municipalities," Energies, MDPI, vol. 13(2), pages 1-23, January.
  45. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
  46. Calderón, Carlos & Underwood, Chris & Yi, Jialiang & Mcloughlin, Adrian & Williams, Brian, 2019. "An area-based modelling approach for planning heating electrification," Energy Policy, Elsevier, vol. 131(C), pages 262-280.
  47. Johansson, Petter, 2021. "Heat pumps in Sweden – A historical review," Energy, Elsevier, vol. 229(C).
  48. Marcello Aprile & Rossano Scoccia & Alice Dénarié & Pál Kiss & Marcell Dombrovszky & Damian Gwerder & Philipp Schuetz & Peru Elguezabal & Beñat Arregi, 2019. "District Power-To-Heat/Cool Complemented by Sewage Heat Recovery," Energies, MDPI, vol. 12(3), pages 1-21, January.
  49. Fangtian Sun & Yonghua Xie & Svend Svendsen & Lin Fu, 2020. "New Low-Temperature Central Heating System Integrated with Industrial Exhausted Heat Using Distributed Electric Compression Heat Pumps for Higher Energy Efficiency," Energies, MDPI, vol. 13(24), pages 1-17, December.
  50. Mota-Babiloni, Adrián & Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Molés, Francisco & Amat-Albuixech, Marta & Barragán-Cervera, Ángel, 2018. "Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential," Energy, Elsevier, vol. 165(PB), pages 1248-1258.
  51. Aleksandar Ivančić & Joaquim Romaní & Jaume Salom & Maria-Victoria Cambronero, 2021. "Performance Assessment of District Energy Systems with Common Elements for Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-22, April.
  52. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
  53. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
  54. Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  55. Chen, Yusheng & Guo, Tong & Kainz, Josef & Kriegel, Martin & Gaderer, Matthias, 2022. "Design of a biomass-heating network with an integrated heat pump: A simulation-based multi-objective optimization framework," Applied Energy, Elsevier, vol. 326(C).
  56. Gaudard, Adrien & Wüest, Alfred & Schmid, Martin, 2019. "Using lakes and rivers for extraction and disposal of heat: Estimate of regional potentials," Renewable Energy, Elsevier, vol. 134(C), pages 330-342.
  57. Novosel, T. & Pukšec, T. & Duić, N. & Domac, J., 2020. "Heat demand mapping and district heating assessment in data-pour areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  58. Jesper, Mateo & Schlosser, Florian & Pag, Felix & Walmsley, Timothy Gordon & Schmitt, Bastian & Vajen, Klaus, 2021. "Large-scale heat pumps: Uptake and performance modelling of market-available devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  59. Kontu, K. & Rinne, S. & Junnila, S., 2019. "Introducing modern heat pumps to existing district heating systems – Global lessons from viable decarbonizing of district heating in Finland," Energy, Elsevier, vol. 166(C), pages 862-870.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.