IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp330-342.html
   My bibliography  Save this article

Using lakes and rivers for extraction and disposal of heat: Estimate of regional potentials

Author

Listed:
  • Gaudard, Adrien
  • Wüest, Alfred
  • Schmid, Martin

Abstract

There is increasing interest in using waterbodies as renewable energy sources to heat and cool buildings and infrastructure. Here, we estimate the potentials for heat extraction and disposal for the main lakes and rivers of Switzerland based on acceptable temperature changes in the waterbodies, and compare them to regional demands. In most cases, the potentials considerably exceed the demand, and minor impacts on the thermal regime of the waterbodies are expected. There are, however, critical situations: rivers crossing densely-populated areas, where demand often exceeds the potential, and heat disposal in summer into lowland rivers and shallow lakes, where temperatures may exceed ecological criteria. To assess the impacts of a realistic thermal use, we model the temperature effects in two lakes: Upper Lake Constance, a large lake with relatively low population density, and Lower Lake Zurich, a smaller lake with high regional demand. The estimated mean temperature alterations are −0.05 to +0.02 °C for Lake Constance, and −0.60 to +0.22 °C for Lake Zurich. Based on the model results, we discuss the effects of operating parameters on the efficiency and impacts of thermal use. Our analysis demonstrates that waterbodies provide real alternatives for heat/cold production in many regions of the world.

Suggested Citation

  • Gaudard, Adrien & Wüest, Alfred & Schmid, Martin, 2019. "Using lakes and rivers for extraction and disposal of heat: Estimate of regional potentials," Renewable Energy, Elsevier, vol. 134(C), pages 330-342.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:330-342
    DOI: 10.1016/j.renene.2018.10.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Epting, Jannis & Müller, Matthias H. & Genske, Dieter & Huggenberger, Peter, 2018. "Relating groundwater heat-potential to city-scale heat-demand: A theoretical consideration for urban groundwater resource management," Applied Energy, Elsevier, vol. 228(C), pages 1499-1505.
    2. Lund, Rasmus & Persson, Urban, 2016. "Mapping of potential heat sources for heat pumps for district heating in Denmark," Energy, Elsevier, vol. 110(C), pages 129-138.
    3. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    4. Huttrer, Gerald W., 1997. "Geothermal heat pumps: An increasingly successful technology," Renewable Energy, Elsevier, vol. 10(2), pages 481-488.
    5. Eisenack, Klaus, 2016. "Institutional adaptation to cooling water scarcity for thermoelectric power generation under global warming," Ecological Economics, Elsevier, vol. 124(C), pages 153-163.
    6. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    7. Büyükalaca, O. & Ekinci, F. & Yılmaz, T., 2003. "Experimental investigation of Seyhan River and dam lake as heat source–sink for a heat pump," Energy, Elsevier, vol. 28(2), pages 157-169.
    8. Ni, Long & Dong, Jiankai & Yao, Yang & Shen, Chao & Qv, Dehu & Zhang, Xuedan, 2015. "A review of heat pump systems for heating and cooling of buildings in China in the last decade," Renewable Energy, Elsevier, vol. 84(C), pages 30-45.
    9. Luo, Jin & Luo, Zequan & Xie, Jihai & Xia, Dongsheng & Huang, Wei & Shao, Haibin & Xiang, Wei & Rohn, Joachim, 2018. "Investigation of shallow geothermal potentials for different types of ground source heat pump systems (GSHP) of Wuhan city in China," Renewable Energy, Elsevier, vol. 118(C), pages 230-244.
    10. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    11. Wong, L.T. & Mui, K.W. & Guan, Y., 2010. "Shower water heat recovery in high-rise residential buildings of Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 703-709, February.
    12. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    2. B. Igliński & M. Skrzatek & W. Kujawski & M. Cichosz & R. Buczkowski, 2022. "SWOT analysis of renewable energy sector in Mazowieckie Voivodeship (Poland): current progress, prospects and policy implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 77-111, January.
    3. Jessika Gappisch & Steve Borchardt & Boris Lehmann, 2023. "Potential Analysis and Feasibility Study on the Hydrothermal Utilization of Rivers—Using Marburg on the Lahn River as Case Study," Energies, MDPI, vol. 17(1), pages 1-30, December.
    4. Long, Jibo & Jiang, Hanyu & Liao, Chizhen & Hu, Qihong & Zhang, Ying & Zhang, Ruichao, 2023. "Heat load-carrying capacity of surface water source combined with stagnant water and river water," Renewable Energy, Elsevier, vol. 207(C), pages 286-297.
    5. Dong Kyu Park & Youngmin Lee, 2020. "Numerical Simulations on the Application of a Closed-Loop Lake Water Heat Pump System in the Lake Soyang, Korea," Energies, MDPI, vol. 13(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    2. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. Narula, Kapil & Chambers, Jonathan & Streicher, Kai N. & Patel, Martin K., 2019. "Strategies for decarbonising the Swiss heating system," Energy, Elsevier, vol. 169(C), pages 1119-1131.
    4. Elías-Maxil, J.A. & van der Hoek, Jan Peter & Hofman, Jan & Rietveld, Luuk, 2014. "Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 808-820.
    5. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    6. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    7. Cai, Yang & Zhang, Dong-Dong & Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2019. "Air source thermoelectric heat pump for simultaneous cold air delivery and hot water supply: Full modeling and performance evaluation," Renewable Energy, Elsevier, vol. 130(C), pages 968-981.
    8. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    9. Levihn, Fabian, 2017. "CHP and heat pumps to balance renewable power production: Lessons from the district heating network in Stockholm," Energy, Elsevier, vol. 137(C), pages 670-678.
    10. Maryam Karami & Hajar Abdshahi, 2023. "Energy and exergy analysis of the transient performance of a qanat-source heat pump using TRNSYS-MATLAB co-simulator," Energy & Environment, , vol. 34(3), pages 560-585, May.
    11. Andersen, Anders N. & Østergaard, Poul Alberg, 2020. "Support schemes adapting district energy combined heat and power for the role as a flexibility provider in renewable energy systems," Energy, Elsevier, vol. 192(C).
    12. Mitterrutzner, Benjamin & Callegher, Claudio Zandonella & Fraboni, Riccardo & Wilczynski, Eric & Pezzutto, Simon, 2023. "Review of heating and cooling technologies for buildings: A techno-economic case study of eleven European countries," Energy, Elsevier, vol. 284(C).
    13. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    15. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    16. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    17. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    18. Ali Kahraman & Alaeddin Çelebi, 2009. "Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source," Energies, MDPI, vol. 2(3), pages 1-17, August.
    19. Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.
    20. Xiang Gou & Shian Liu & Yang Fu & Qiyan Zhang & Saima Iram & Yingfan Liu, 2018. "Experimental Study on the Performance of a Household Dual-Source Heat Pump Water Heater," Energies, MDPI, vol. 11(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:330-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.