IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp868-874.html
   My bibliography  Save this article

Socioeconomic cost-benefit-analysis of seasonal heat storages in district heating systems with industrial waste heat integration

Author

Listed:
  • Moser, Simon
  • Mayrhofer, Julia
  • Schmidt, Ralf-Roman
  • Tichler, Robert

Abstract

Industrial waste heat is primarily available in summer months while district heating demand is greater in winter months. In order to shift heat potentials from summer to winter and thereby make the feed-in of industrial waste heat economically more attractive, the paper explores the use of waste heat with large-scale (seasonal) heat storage. This paper focuses on the case study of the industrial city of Linz (Austria), and demonstrates the advantages and disadvantages of seasonal heat storage. The interaction between the storage system with optimal cogeneration plant dispatch and industrial waste heat integration is explained. Furthermore, the most important parameters of the heat storage in order to achieve economic feasibility are highlighted. One main finding is that the number of annual cycles is crucial for a seasonal heat storage. The amortization period is computed to be about 20 years, and is shown to be extremely sensitive to changes in electricity, gas and CO2 prices.

Suggested Citation

  • Moser, Simon & Mayrhofer, Julia & Schmidt, Ralf-Roman & Tichler, Robert, 2018. "Socioeconomic cost-benefit-analysis of seasonal heat storages in district heating systems with industrial waste heat integration," Energy, Elsevier, vol. 160(C), pages 868-874.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:868-874
    DOI: 10.1016/j.energy.2018.07.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winterscheid, Carlo & Dalenbäck, Jan-Olof & Holler, Stefan, 2017. "Integration of solar thermal systems in existing district heating systems," Energy, Elsevier, vol. 137(C), pages 579-585.
    2. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    3. Lund, Rasmus & Persson, Urban, 2016. "Mapping of potential heat sources for heat pumps for district heating in Denmark," Energy, Elsevier, vol. 110(C), pages 129-138.
    4. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    5. Mathiesen, Brian Vad & Lund, Henrik & Connolly, David, 2012. "Limiting biomass consumption for heating in 100% renewable energy systems," Energy, Elsevier, vol. 48(1), pages 160-168.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    7. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    8. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    9. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lygnerud, Kristina & Klugman, Sofia & Fransson, Nathalie & Nilsson, Johanna, 2022. "Risk assessment of industrial excess heat collaborations – Empirical data from new and ongoing installations," Energy, Elsevier, vol. 255(C).
    2. Mansoor, Muhammad & Stadler, Michael & Zellinger, Michael & Lichtenegger, Klaus & Auer, Hans & Cosic, Armin, 2021. "Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions," Energy, Elsevier, vol. 215(PA).
    3. Dahash, Abdulrahman & Ochs, Fabian & Tosatto, Alice & Streicher, Wolfgang, 2020. "Toward efficient numerical modeling and analysis of large-scale thermal energy storage for renewable district heating," Applied Energy, Elsevier, vol. 279(C).
    4. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    5. Thomas Adisorn & Lena Tholen & Johannes Thema & Hauke Luetkehaus & Sibylle Braungardt & Katja Huenecke & Katja Schumacher, 2020. "Towards a More Realistic Cost–Benefit Analysis—Attempting to Integrate Transaction Costs and Energy Efficiency Services," Energies, MDPI, vol. 14(1), pages 1-15, December.
    6. Li, Haoran & Hou, Juan & Hong, Tianzhen & Ding, Yuemin & Nord, Natasa, 2021. "Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres," Energy, Elsevier, vol. 219(C).
    7. Moser, Simon & Puschnigg, Stefan & Rodin, Valerie, 2020. "Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems," Energy, Elsevier, vol. 200(C).
    8. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    9. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    10. Simon Moser & Stefan Puschnigg, 2021. "Supra-Regional District Heating Networks: A Missing Infrastructure for a Sustainable Energy System," Energies, MDPI, vol. 14(12), pages 1-15, June.
    11. Simon Moser & Gabriela Jauschnik, 2023. "Using Industrial Waste Heat in District Heating: Insights on Effective Project Initiation and Business Models," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    12. Petri Penttinen & Jussi Vimpari & Seppo Junnila, 2021. "Optimal Seasonal Heat Storage in a District Heating System with Waste Incineration," Energies, MDPI, vol. 14(12), pages 1-15, June.
    13. Lucas Schmeling & Patrik Schönfeldt & Peter Klement & Steffen Wehkamp & Benedikt Hanke & Carsten Agert, 2020. "Development of a Decision-Making Framework for Distributed Energy Systems in a German District," Energies, MDPI, vol. 13(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    2. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    3. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    4. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    5. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    7. Andrei David & Brian Vad Mathiesen & Helge Averfalk & Sven Werner & Henrik Lund, 2017. "Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems," Energies, MDPI, vol. 10(4), pages 1-18, April.
    8. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    9. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    10. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    11. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    12. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    13. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    14. Nis Bertelsen & Brian Vad Mathiesen, 2020. "EU-28 Residential Heat Supply and Consumption: Historical Development and Status," Energies, MDPI, vol. 13(8), pages 1-21, April.
    15. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    16. Andersen, Anders N. & Østergaard, Poul Alberg, 2020. "Support schemes adapting district energy combined heat and power for the role as a flexibility provider in renewable energy systems," Energy, Elsevier, vol. 192(C).
    17. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    18. Caputo, Paola & Ferla, Giulio & Ferrari, Simone, 2019. "Evaluation of environmental and energy effects of biomass district heating by a wide survey based on operational conditions in Italy," Energy, Elsevier, vol. 174(C), pages 1210-1218.
    19. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Connolly, David, 2018. "Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas," Energy, Elsevier, vol. 158(C), pages 281-292.
    20. Narula, Kapil & Chambers, Jonathan & Streicher, Kai N. & Patel, Martin K., 2019. "Strategies for decarbonising the Swiss heating system," Energy, Elsevier, vol. 169(C), pages 1119-1131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:868-874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.