IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v131y2020ics1364032120302781.html
   My bibliography  Save this article

Heat demand mapping and district heating assessment in data-pour areas

Author

Listed:
  • Novosel, T.
  • Pukšec, T.
  • Duić, N.
  • Domac, J.

Abstract

Buildings represent 40% of the European Union's energy consumption and 36% of its greenhouse gas emissions making it obvious that the decarbonisation of the European Union depends on the sustainable provision of heat in its cities. District heating presents it self as a clear solution to this issue. It is capable of supplying waste and renewable heat from where it is available to where it is needed and can provide a powerful driver for the integration of renewables in the electrical system through the flexibility that power to heat technologies can provide. Due to the inability of long-distance transport of heat, spatial planning and GIS mapping has proven to be a very important tool in heat planning. This usually requires a lot of highly detailed data which is often not available. The research presented in this paper is tackling this issue trough a heat demand mapping and district heating viability assessment method using mostly public databases. The developed method consists of three key steps: assessment of the aggregated heating demand, bottom up mapping used for validation and top down mapping of the entire observed area. The result of the mapping is used in the assessment of the district heating potential based on the difference between the price and levelized cost of heat as well as the assumed cost of the distribution infrastructure. The method has been implemented on the case of Croatia showing a significant potential for the economic utilization of district heating.

Suggested Citation

  • Novosel, T. & Pukšec, T. & Duić, N. & Domac, J., 2020. "Heat demand mapping and district heating assessment in data-pour areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120302781
    DOI: 10.1016/j.rser.2020.109987
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120302781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berger, Matthias & Worlitschek, Jörg, 2018. "A novel approach for estimating residential space heating demand," Energy, Elsevier, vol. 159(C), pages 294-301.
    2. Anwarzai, Mohammad Abed & Nagasaka, Ken, 2017. "Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 150-160.
    3. Lund, Rasmus & Persson, Urban, 2016. "Mapping of potential heat sources for heat pumps for district heating in Denmark," Energy, Elsevier, vol. 110(C), pages 129-138.
    4. Gils, Hans Christian & Cofala, Janusz & Wagner, Fabian & Schöpp, Wolfgang, 2013. "GIS-based assessment of the district heating potential in the USA," Energy, Elsevier, vol. 58(C), pages 318-329.
    5. Huculak, Maciej & Jarczewski, Wojciech & Dej, Magdalena, 2015. "Economic aspects of the use of deep geothermal heat in district heating in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 29-40.
    6. Petrović, Stefan & Karlsson, Kenneth, 2016. "Ringkøbing-Skjern energy atlas for analysis of heat saving potentials in building stock," Energy, Elsevier, vol. 110(C), pages 166-177.
    7. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    8. Jangid, Jayant & Bera, Apurba Kumar & Joseph, Manoj & Singh, Vishal & Singh, T.P. & Pradhan, B.K. & Das, Sandipan, 2016. "Potential zones identification for harvesting wind energy resources in desert region of India – A multi criteria evaluation approach using remote sensing and GIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1-10.
    9. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    10. Nielsen, Steffen & Möller, Bernd, 2013. "GIS based analysis of future district heating potential in Denmark," Energy, Elsevier, vol. 57(C), pages 458-468.
    11. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    12. Zyadin, Anas & Natarajan, Karthikeyan & Latva-Käyrä, Petri & Igliński, Bartłomiej & Iglińska, Anna & Trishkin, Maxim & Pelkonen, Paavo & Pappinen, Ari, 2018. "Estimation of surplus biomass potential in southern and central Poland using GIS applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 204-215.
    13. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    14. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Connolly, David, 2018. "Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas," Energy, Elsevier, vol. 158(C), pages 281-292.
    15. Miró, Laia & Brückner, Sarah & Cabeza, Luisa F., 2015. "Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 847-855.
    16. Connolly, D., 2017. "Heat Roadmap Europe: Quantitative comparison between the electricity, heating, and cooling sectors for different European countries," Energy, Elsevier, vol. 139(C), pages 580-593.
    17. Huang, Junpeng & Fan, Jianhua & Furbo, Simon, 2019. "Feasibility study on solar district heating in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 53-64.
    18. Zareei, Samira, 2018. "Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran," Renewable Energy, Elsevier, vol. 118(C), pages 351-356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Tao & Sun, Yuge & Huang, Can & Mu, Chenlu & Fan, Yuqi & Lin, Jiang & Qin, Yining, 2022. "Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Meha, Drilon & Dragusha, Bedri & Thakur, Jagruti & Novosel, Tomislav & Duić, Neven, 2021. "A novel spatial based approach for estimation of space heating demand saving potential and CO2 emissions reduction in urban areas," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malte Schwanebeck & Marcus Krüger & Rainer Duttmann, 2021. "Improving GIS-Based Heat Demand Modelling and Mapping for Residential Buildings with Census Data Sets at Regional and Sub-Regional Scales," Energies, MDPI, vol. 14(4), pages 1-18, February.
    2. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    3. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    4. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    5. Verschelde, Tars & D'haeseleer, William, 2021. "Methodology for a global sensitivity analysis with machine learning on an energy system planning model in the context of thermal networks," Energy, Elsevier, vol. 232(C).
    6. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    7. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    8. Beatriz María Paredes-Sánchez & José Pablo Paredes & Natalia Caparrini & Elena Rivo-López, 2021. "Analysis of District Heating and Cooling Energy Systems in Spain: Resources, Technology and Management," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    9. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    10. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
    11. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    12. Stegnar, Gašper & Staničić, D. & Česen, M. & Čižman, J. & Pestotnik, S. & Prestor, J. & Urbančič, A. & Merše, S., 2019. "A framework for assessing the technical and economic potential of shallow geothermal energy in individual and district heating systems: A case study of Slovenia," Energy, Elsevier, vol. 180(C), pages 405-420.
    13. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    14. Muhammad Faizan Tahir & Haoyong Chen & Muhammad Sufyan Javed & Irfan Jameel & Asad Khan & Saifullah Adnan, 2019. "Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030," Energies, MDPI, vol. 12(11), pages 1-20, May.
    15. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    16. Pia Manz & Katerina Kermeli & Urban Persson & Marius Neuwirth & Tobias Fleiter & Wina Crijns-Graus, 2021. "Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    17. Andreas Müller & Marcus Hummel & Lukas Kranzl & Mostafa Fallahnejad & Richard Büchele, 2019. "Open Source Data for Gross Floor Area and Heat Demand Density on the Hectare Level for EU 28," Energies, MDPI, vol. 12(24), pages 1-25, December.
    18. Salenbien, R. & Wack, Y. & Baelmans, M. & Blommaert, M., 2023. "Geographically informed automated non-linear topology optimization of district heating networks," Energy, Elsevier, vol. 283(C).
    19. Meha, Drilon & Novosel, Tomislav & Duić, Neven, 2020. "Bottom-up and top-down heat demand mapping methods for small municipalities, case Gllogoc," Energy, Elsevier, vol. 199(C).
    20. Bühler, Fabian & Petrović, Stefan & Holm, Fridolin Müller & Karlsson, Kenneth & Elmegaard, Brian, 2018. "Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating," Energy, Elsevier, vol. 151(C), pages 715-728.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120302781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.