IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v41y2012icp245-253.html
   My bibliography  Save this item

Numerical sensitivity study of thermal response tests

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
  2. Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.
  3. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
  4. Jensen-Page, Linden & Narsilio, Guillermo A. & Bidarmaghz, Asal & Johnston, Ian W., 2018. "Investigation of the effect of seasonal variation in ground temperature on thermal response tests," Renewable Energy, Elsevier, vol. 125(C), pages 609-619.
  5. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
  6. Tsubaki, Koutaro & Mitsutake, Yuichi, 2016. "Performance of ground-source heat exchangers using short residential foundation piles," Energy, Elsevier, vol. 104(C), pages 229-236.
  7. Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Christodoulides, Paul & Joseph-Stylianou, Josephina, 2015. "Artificial neural networks for the generation of a conductivity map of the ground," Renewable Energy, Elsevier, vol. 77(C), pages 400-407.
  8. Longcang Shu & Rui Xiao & Zhonghui Wen & Yuezan Tao & Peigui Liu, 2017. "Impact of Boundary Conditions on a Groundwater Heat Pump System Design in a Shallow and Thin Aquifer near the River," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
  9. Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  10. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
  11. Li, Biao & Han, Zongwei & Hu, Honghao & Bai, Chenguang, 2020. "Study on the effect of groundwater flow on the identification of thermal properties of soils," Renewable Energy, Elsevier, vol. 147(P2), pages 2688-2695.
  12. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
  13. Casasso, Alessandro & Sethi, Rajandrea, 2015. "Modelling thermal recycling occurring in groundwater heat pumps (GWHPs)," Renewable Energy, Elsevier, vol. 77(C), pages 86-93.
  14. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 2: Numerical study of applicability and limitation of infinite line source model for interpretation under disturbance from outdoor environment," Renewable Energy, Elsevier, vol. 85(C), pages 1090-1105.
  15. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
  16. Saeid, Sanaz & Al-Khoury, Rafid & Nick, Hamidreza M. & Barends, Frans, 2014. "Experimental–numerical study of heat flow in deep low-enthalpy geothermal conditions," Renewable Energy, Elsevier, vol. 62(C), pages 716-730.
  17. Zhang, Changxing & Lu, Xizheng & Liu, Yufeng & Lu, Jiahui & Sun, Shicai, 2023. "Effect of seepage condition in geological stratification on thermal response test analysis of borehole heat exchanger," Renewable Energy, Elsevier, vol. 205(C), pages 813-822.
  18. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
  19. Casasso, Alessandro & Sethi, Rajandrea, 2014. "Efficiency of closed loop geothermal heat pumps: A sensitivity analysis," Renewable Energy, Elsevier, vol. 62(C), pages 737-746.
  20. Louis Lamarche & Jasmin Raymond & Claude Hugo Koubikana Pambou, 2017. "Evaluation of the Internal and Borehole Resistances during Thermal Response Tests and Impact on Ground Heat Exchanger Design," Energies, MDPI, vol. 11(1), pages 1-17, December.
  21. Raymond, J. & Lamarche, L., 2013. "Simulation of thermal response tests in a layered subsurface," Applied Energy, Elsevier, vol. 109(C), pages 293-301.
  22. Tye-Gingras, Maxime & Gosselin, Louis, 2014. "Generic ground response functions for ground exchangers in the presence of groundwater flow," Renewable Energy, Elsevier, vol. 72(C), pages 354-366.
  23. Rashidi, Saman & Esfahani, Javad Abolfazli & Karimi, Nader, 2018. "Porous materials in building energy technologies—A review of the applications, modelling and experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 229-247.
  24. Franco, A. & Moffat, R. & Toledo, M. & Herrera, P., 2016. "Numerical sensitivity analysis of thermal response tests (TRT) in energy piles," Renewable Energy, Elsevier, vol. 86(C), pages 985-992.
  25. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
  26. Liu, Jun & Wang, Fenghao & Cai, Wanlong & Wang, Zhihua & Li, Chun, 2020. "Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 149(C), pages 384-399.
  27. Oliver Suft & David Bertermann, 2022. "One-Year Monitoring of a Ground Heat Exchanger Using the In Situ Thermal Response Test: An Experimental Approach on Climatic Effects," Energies, MDPI, vol. 15(24), pages 1-15, December.
  28. Ioan Sarbu & Calin Sebarchievici, 2020. "Exploratory Research to Improve Energy-Efficiency of a Ground-Coupled Heat Pump Utilizing an Automatic Control Device of Circulation Pump Speed," Energies, MDPI, vol. 13(19), pages 1-19, September.
  29. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  30. Luo, Jin & Rohn, Joachim & Bayer, Manfred & Priess, Anna & Xiang, Wei, 2014. "Analysis on performance of borehole heat exchanger in a layered subsurface," Applied Energy, Elsevier, vol. 123(C), pages 55-65.
  31. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
  32. Anis Akrouch, Ghassan & Sánchez, Marcelo & Briaud, Jean-Louis, 2020. "Thermal performance and economic study of an energy piles system under cooling dominated conditions," Renewable Energy, Elsevier, vol. 147(P2), pages 2736-2747.
  33. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
  34. Tordrup, K.W. & Poulsen, S.E. & Bjørn, H., 2017. "An improved method for upscaling borehole thermal energy storage using inverse finite element modelling," Renewable Energy, Elsevier, vol. 105(C), pages 13-21.
  35. Shangyuan Chen & Jinfeng Mao & Xu Han & Chaofeng Li & Liyao Liu, 2016. "Numerical Analysis of the Factors Influencing a Vertical U-Tube Ground Heat Exchanger," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
  36. Pophillat, William & Attard, Guillaume & Bayer, Peter & Hecht-Méndez, Jozsef & Blum, Philipp, 2020. "Analytical solutions for predicting thermal plumes of groundwater heat pump systems," Renewable Energy, Elsevier, vol. 147(P2), pages 2696-2707.
  37. Luo, Jin & Zhao, Haifeng & Jia, Jia & Xiang, Wei & Rohn, Joachim & Blum, Philipp, 2017. "Study on operation management of borehole heat exchangers for a large-scale hybrid ground source heat pump system in China," Energy, Elsevier, vol. 123(C), pages 340-352.
  38. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
  39. Zhang, Xueping & Han, Zongwei & Meng, Xinwei & Li, Gui & Ji, Qiang & Li, Xiuming & Yang, Lingyan, 2021. "Study on high-precision identification method of ground thermal properties based on neural network model," Renewable Energy, Elsevier, vol. 163(C), pages 1838-1848.
  40. Zhang, Xueping & Han, Zongwei & Li, Gui & Li, Xiuming, 2022. "Effect of temperature measurement error on parameters estimation accuracy for thermal response tests," Renewable Energy, Elsevier, vol. 185(C), pages 230-240.
  41. Zhang, Changxing & Song, Wei & Sun, Shicai & Peng, Donggen, 2015. "Parameter estimation of in-situ thermal response test with unstable heat rate," Energy, Elsevier, vol. 88(C), pages 497-505.
  42. Luca Alberti & Adriana Angelotti & Matteo Antelmi & Ivana La Licata, 2017. "A Numerical Study on the Impact of Grouting Material on Borehole Heat Exchangers Performance in Aquifers," Energies, MDPI, vol. 10(5), pages 1-15, May.
  43. Shohei Kaneko & Akira Tomigashi & Takeshi Ishihara & Gaurav Shrestha & Mayumi Yoshioka & Youhei Uchida, 2020. "Proposal for a Method Predicting Suitable Areas for Installation of Ground-Source Heat Pump Systems Based on Response Surface Methodology," Energies, MDPI, vol. 13(8), pages 1-18, April.
  44. Yongjie Ma & Yanjun Zhang & Yuxiang Cheng & Yu Zhang & Xuefeng Gao & Kun Shan, 2022. "A Case Study of Field Thermal Response Test and Laboratory Test Based on Distributed Optical Fiber Temperature Sensor," Energies, MDPI, vol. 15(21), pages 1-20, October.
  45. Zhang, Changxing & Xu, Hang & Fan, Jianhua & Sun, Pengkun & Sun, Shicai & Kong, Xiangqiang, 2020. "The coupled two-step parameter estimation procedure for borehole thermal resistance in thermal response test," Renewable Energy, Elsevier, vol. 154(C), pages 672-683.
  46. Zhu, Li & Chen, Sarula & Yang, Yang & Tian, Wei & Sun, Yong & Lyu, Mian, 2019. "Global sensitivity analysis on borehole thermal energy storage performances under intermittent operation mode in the first charging phase," Renewable Energy, Elsevier, vol. 143(C), pages 183-198.
  47. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
  48. Luo, Jin & Rohn, Joachim & Xiang, Wei & Bayer, Manfred & Priess, Anna & Wilkmann, Lucas & Steger, Hagen & Zorn, Roman, 2015. "Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers," Energy, Elsevier, vol. 84(C), pages 473-484.
  49. Christopher Vella & Simon Paul Borg & Daniel Micallef, 2020. "The Effect of Shank-Space on the Thermal Performance of Shallow Vertical U-Tube Ground Heat Exchangers," Energies, MDPI, vol. 13(3), pages 1-16, January.
  50. Luo, Yongqaing & Guo, Hongshan & Meggers, Forrest & Zhang, Ling, 2019. "Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis," Energy, Elsevier, vol. 185(C), pages 1298-1313.
  51. Witte, Henk J.L., 2013. "Error analysis of thermal response tests," Applied Energy, Elsevier, vol. 109(C), pages 302-311.
  52. Aira, Roberto & Fernández-Seara, José & Diz, Rubén & Pardiñas, Ángel Á., 2017. "Experimental analysis of a ground source heat pump in a residential installation after two years in operation," Renewable Energy, Elsevier, vol. 114(PB), pages 1214-1223.
  53. Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Panayides, Ioannis & Joseph-Stylianou, Josephina & Zomeni, Zomenia, 2012. "Artificial neural networks for the generation of geothermal maps of ground temperature at various depths by considering land configuration," Energy, Elsevier, vol. 48(1), pages 233-240.
  54. Bujok, Petr & Grycz, David & Klempa, Martin & Kunz, Antonín & Porzer, Michal & Pytlik, Adam & Rozehnal, Zdeněk & Vojčinák, Petr, 2014. "Assessment of the influence of shortening the duration of TRT (thermal response test) on the precision of measured values," Energy, Elsevier, vol. 64(C), pages 120-129.
  55. Sebarchievici, Calin & Sarbu, Ioan, 2015. "Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation," Renewable Energy, Elsevier, vol. 76(C), pages 148-159.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.