IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v134y2020ics1364032120306249.html
   My bibliography  Save this article

Actively heated fiber optics based thermal response test: A field demonstration

Author

Listed:
  • Zhang, Bo
  • Gu, Kai
  • Shi, Bin
  • Liu, Chun
  • Bayer, Peter
  • Wei, Guangqing
  • Gong, Xülong
  • Yang, Lei

Abstract

Accurate estimation of thermal ground properties is needed to optimally apply shallow geothermal energy technologies, which are of growing importance for the heating and cooling sector. A special challenge is posed by the often significant heterogeneity and variability of the geological media at a site. As an innovative investigation method, here the focus is on the actively heated fiber optics based thermal response test (ATRT). A type of copper mesh heated optical cable (CMHC), which both serves as a heating source and a temperature sensing cable, was applied in the field in a borehole. By inducing the electric current to the cable at a relatively low power of 26 W/m, the in-situ heating process was recorded at high depth resolution. This information serves to infer the thermal conductivity distribution along the borehole. The presented field experience reveals that the temperature rise in the early phase of the test should not be used due to initial heat accumulation caused by the outer jacket of the CMHC. The comparison of these results with those of a conventional thermal response test (TRT) and a distributed thermal response test (DTRT) in the same borehole confirmed that the ATRT result is reliable (with a difference less than 5% and 1%, respectively), since this novel method affords much less energy and test time. Additionally, the ATRT result agrees well with ground thermal conductivities tested in the lab, which supports its potential as an advanced geothermal field investigation technique in the future.

Suggested Citation

  • Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306249
    DOI: 10.1016/j.rser.2020.110336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120306249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spitler, Jeffrey D. & Gehlin, Signhild E.A., 2015. "Thermal response testing for ground source heat pump systems—An historical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1125-1137.
    2. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    3. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    4. Tang, Fujiao & Nowamooz, Hossein, 2019. "Sensitive analysis on the effective soil thermal conductivity of the Thermal Response Test considering various testing times, field conditions and U-pipe lengths," Renewable Energy, Elsevier, vol. 143(C), pages 1732-1743.
    5. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    6. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    7. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    8. Wagner, Valentin & Bayer, Peter & Kübert, Markus & Blum, Philipp, 2012. "Numerical sensitivity study of thermal response tests," Renewable Energy, Elsevier, vol. 41(C), pages 245-253.
    9. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
    10. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
    12. Ciriaco, Anthony E. & Zarrouk, Sadiq J. & Zakeri, Golbon, 2020. "Geothermal resource and reserve assessment methodology: Overview, analysis and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
    14. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    15. Maria Isabel Vélez Márquez & Jasmin Raymond & Daniela Blessent & Mikael Philippe & Nataline Simon & Olivier Bour & Louis Lamarche, 2018. "Distributed Thermal Response Tests Using a Heating Cable and Fiber Optic Temperature Sensing," Energies, MDPI, vol. 11(11), pages 1-24, November.
    16. Alessandro Franco & Paolo Conti, 2020. "Clearing a Path for Ground Heat Exchange Systems: A Review on Thermal Response Test (TRT) Methods and a Geotechnical Routine Test for Estimating Soil Thermal Properties," Energies, MDPI, vol. 13(11), pages 1-21, June.
    17. Luo, Jin & Rohn, Joachim & Xiang, Wei & Bayer, Manfred & Priess, Anna & Wilkmann, Lucas & Steger, Hagen & Zorn, Roman, 2015. "Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers," Energy, Elsevier, vol. 84(C), pages 473-484.
    18. Bujok, Petr & Grycz, David & Klempa, Martin & Kunz, Antonín & Porzer, Michal & Pytlik, Adam & Rozehnal, Zdeněk & Vojčinák, Petr, 2014. "Assessment of the influence of shortening the duration of TRT (thermal response test) on the precision of measured values," Energy, Elsevier, vol. 64(C), pages 120-129.
    19. Acuña, José & Palm, Björn, 2013. "Distributed thermal response tests on pipe-in-pipe borehole heat exchangers," Applied Energy, Elsevier, vol. 109(C), pages 312-320.
    20. Shaopeng Huang, 2012. "Geothermal energy in China," Nature Climate Change, Nature, vol. 2(8), pages 557-560, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João de Sousa Figueira & Stefan Nachbaur & Stefan Wehinger & Peter Bourne-Webb, 2024. "The Implementation and Comparison of Conventional and Enhanced Borehole Thermal Response Tests: A Case Study," Energies, MDPI, vol. 17(13), pages 1-12, June.
    2. Hakala, Petri & Vallin, Sami & Arola, Teppo & Martinkauppi, Ilkka, 2022. "Novel use of the enhanced thermal response test in crystalline bedrock," Renewable Energy, Elsevier, vol. 182(C), pages 467-482.
    3. Changlong Wang & Qiang Fu & Wanyu Sun & Jinli Lu & Yanhong Sun & Wanwan Li, 2023. "Estimation of Layered Ground Thermal Properties for Deep Coaxial Ground Heat Exchanger," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    4. Yongjie Ma & Yanjun Zhang & Yuxiang Cheng & Yu Zhang & Xuefeng Gao & Kun Shan, 2022. "A Case Study of Field Thermal Response Test and Laboratory Test Based on Distributed Optical Fiber Temperature Sensor," Energies, MDPI, vol. 15(21), pages 1-20, October.
    5. Nicolò Giordano & Louis Lamarche & Jasmin Raymond, 2021. "Evaluation of Subsurface Heat Capacity through Oscillatory Thermal Response Tests," Energies, MDPI, vol. 14(18), pages 1-26, September.
    6. Chae, Hobyung & Bae, Sangmu & Jeong, Jae-Weon & Nam, Yujin, 2024. "Performance and economic analysis for optimal length of borehole heat exchanger considering effects of groundwater," Renewable Energy, Elsevier, vol. 224(C).
    7. Zhang, Bo & Gu, Kai & Wei, Zhuang & Jiang, Lin & Zheng, Yu & Wang, Baojun & Shi, Bin, 2023. "Governing factors for actively heated fiber optics based thermal response tests," Renewable Energy, Elsevier, vol. 219(P1).
    8. Miguel Angel Marazuela & Alejandro García-Gil, 2022. "Frontier Research of Engineering: Geothermal Energy Utilization and Groundwater Heat Pump Systems," Sustainability, MDPI, vol. 14(21), pages 1-3, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Yoshitaka Sakata & Takao Katsura & Ahmed A. Serageldin & Katsunori Nagano & Motoaki Ooe, 2021. "Evaluating Variability of Ground Thermal Conductivity within a Steep Site by History Matching Underground Distributed Temperatures from Thermal Response Tests," Energies, MDPI, vol. 14(7), pages 1-17, March.
    3. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    4. Soldo, Vladimir & Boban, Luka & Borović, Staša, 2016. "Vertical distribution of shallow ground thermal properties in different geological settings in Croatia," Renewable Energy, Elsevier, vol. 99(C), pages 1202-1212.
    5. BniLam, Noori & Al-Khoury, Rafid, 2020. "Parameter identification algorithm for ground source heat pump systems," Applied Energy, Elsevier, vol. 264(C).
    6. Zhang, Bo & Gu, Kai & Wei, Zhuang & Jiang, Lin & Zheng, Yu & Wang, Baojun & Shi, Bin, 2023. "Governing factors for actively heated fiber optics based thermal response tests," Renewable Energy, Elsevier, vol. 219(P1).
    7. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    8. Alessandro Franco & Paolo Conti, 2020. "Clearing a Path for Ground Heat Exchange Systems: A Review on Thermal Response Test (TRT) Methods and a Geotechnical Routine Test for Estimating Soil Thermal Properties," Energies, MDPI, vol. 13(11), pages 1-21, June.
    9. Aranzabal, Nordin & Martos, Julio & Steger, Hagen & Blum, Philipp & Soret, Jesús, 2019. "Temperature measurements along a vertical borehole heat exchanger: A method comparison," Renewable Energy, Elsevier, vol. 143(C), pages 1247-1258.
    10. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
    11. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
    12. Maria Isabel Vélez Márquez & Jasmin Raymond & Daniela Blessent & Mikael Philippe & Nataline Simon & Olivier Bour & Louis Lamarche, 2018. "Distributed Thermal Response Tests Using a Heating Cable and Fiber Optic Temperature Sensing," Energies, MDPI, vol. 11(11), pages 1-24, November.
    13. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    14. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    15. Hans Schwarz & Borja Badenes & Jan Wagner & José Manuel Cuevas & Javier Urchueguía & David Bertermann, 2021. "A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method," Energies, MDPI, vol. 14(9), pages 1-17, May.
    16. Nicolò Giordano & Louis Lamarche & Jasmin Raymond, 2021. "Evaluation of Subsurface Heat Capacity through Oscillatory Thermal Response Tests," Energies, MDPI, vol. 14(18), pages 1-26, September.
    17. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    18. Li, Biao & Han, Zongwei & Hu, Honghao & Bai, Chenguang, 2020. "Study on the effect of groundwater flow on the identification of thermal properties of soils," Renewable Energy, Elsevier, vol. 147(P2), pages 2688-2695.
    19. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    20. Rapantova, Nada & Pospisil, Pavel & Koziorek, Jiri & Vojcinak, Petr & Grycz, David & Rozehnal, Zdenek, 2016. "Optimisation of experimental operation of borehole thermal energy storage," Applied Energy, Elsevier, vol. 181(C), pages 464-476.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.