IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp384-399.html
   My bibliography  Save this article

Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger

Author

Listed:
  • Liu, Jun
  • Wang, Fenghao
  • Cai, Wanlong
  • Wang, Zhihua
  • Li, Chun

Abstract

Medium-deep borehole heat exchanger (MDBHE) has attracted considerable attention because of its ability to acquire large quantities of geothermal energy. Geological conditions in the medium-deep reservoir significantly affect thermal extraction. This study proposes a transient heat transfer model for MDBHE; the accuracy of the model is validated using experimental data. Using this model, the thermal performance of MDBHE under different geological parameters is investigated based on the operation characteristics of MDBHE. Sensitive analysis highlights the importance of the effects of geothermal gradient, thermal conductivity, and heat capacity of the rock soil on thermal extraction load (TEL) and thermal effect radius (TER) of the MDBHE. Results indicate that geothermal gradient affects the TEL mostly and heat capacity has the greatest impact on TER. In regions with low rock-soil heat capacity, borehole spacing should be sufficiently wide to prevent thermal interference between adjacent boreholes. For continuous operations of MDBHE, the annual average TEL declines with operating year and the declining proportion is the largest in the second year for 4%–6%. Besides, the maximum TER increases, with maximal increasing proportion in the second year up to ∼80%. Under different geological parameters, the declining proportion of TEL and increasing proportion of TER within the same year are almost identical. In addition, the thermal performance of MDBHE under layered subsurface is presented. Layered RTCs and geothermal gradients have a significant effect on the TEL of MDBHE; and layered subsurface with segmented RTCs and rock-soil heat capacities considerably affects the TER. This study will enable the wide promotion of MDBHE application in different regions.

Suggested Citation

  • Liu, Jun & Wang, Fenghao & Cai, Wanlong & Wang, Zhihua & Li, Chun, 2020. "Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 149(C), pages 384-399.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:384-399
    DOI: 10.1016/j.renene.2019.11.158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119318609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    2. Kujawa, Tomasz & Nowak, Władysław & Stachel, Aleksander A., 2006. "Utilization of existing deep geological wells for acquisitions of geothermal energy," Energy, Elsevier, vol. 31(5), pages 650-664.
    3. Falcone, Gioia & Liu, Xiaolei & Okech, Roy Radido & Seyidov, Ferid & Teodoriu, Catalin, 2018. "Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions," Energy, Elsevier, vol. 160(C), pages 54-63.
    4. Lee, Jin-Yong, 2009. "Current status of ground source heat pumps in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1560-1568, August.
    5. Knoblauch, Theresa A.K. & Trutnevyte, Evelina & Stauffacher, Michael, 2019. "Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study," Energy Policy, Elsevier, vol. 128(C), pages 807-816.
    6. Li, Chao & Guan, Yanling & Wang, Xing & Li, Gaopeng & Zhou, Cong & Xun, Yingjiu, 2018. "Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy," Energy, Elsevier, vol. 142(C), pages 689-701.
    7. Wagner, Valentin & Bayer, Peter & Kübert, Markus & Blum, Philipp, 2012. "Numerical sensitivity study of thermal response tests," Renewable Energy, Elsevier, vol. 41(C), pages 245-253.
    8. Luo, Jin & Rohn, Joachim & Bayer, Manfred & Priess, Anna & Xiang, Wei, 2014. "Analysis on performance of borehole heat exchanger in a layered subsurface," Applied Energy, Elsevier, vol. 123(C), pages 55-65.
    9. Tang, Fujiao & Nowamooz, Hossein, 2018. "Long-term performance of a shallow borehole heat exchanger installed in a geothermal field of Alsace region," Renewable Energy, Elsevier, vol. 128(PA), pages 210-222.
    10. Bu, Xianbiao & Ma, Weibin & Li, Huashan, 2012. "Geothermal energy production utilizing abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 41(C), pages 80-85.
    11. Tomac, Ingrid & Sauter, Martin, 2018. "A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3972-3980.
    12. Hou, Jianchao & Cao, Mengchao & Liu, Pingkuo, 2018. "Development and utilization of geothermal energy in China: Current practices and future strategies," Renewable Energy, Elsevier, vol. 125(C), pages 401-412.
    13. Wang, Fenghao & Wang, Zhihua & Zheng, Yuxin & Lin, Zhang & Hao, Pengfei & Huan, Chao & Wang, Tian, 2015. "Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification," Applied Energy, Elsevier, vol. 139(C), pages 212-219.
    14. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    15. Holmberg, Henrik & Acuña, José & Næss, Erling & Sønju, Otto K., 2016. "Thermal evaluation of coaxial deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 97(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Sheng & Liu, Jun & Wang, Fenghao & Chai, Jiale, 2023. "Design optimization of medium-deep borehole heat exchanger for building heating under climate change," Energy, Elsevier, vol. 282(C).
    2. Li, Chao & Guan, Yanling & Liu, Jianhong & Jiang, Chao & Yang, Ruitao & Hou, Xueming, 2020. "Heat transfer performance of a deep ground heat exchanger for building heating in long-term service," Renewable Energy, Elsevier, vol. 166(C), pages 20-34.
    3. Luo, Yongqiang & Xu, Guozhi & Zhang, Shicong & Cheng, Nan & Tian, Zhiyong & Yu, Jinghua, 2022. "Heat extraction and recover of deep borehole heat exchanger: Negotiating with intermittent operation mode under complex geological conditions," Energy, Elsevier, vol. 241(C).
    4. Luo, Yongqiang & Xu, Guozhi & Cheng, Nan, 2021. "Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers," Renewable Energy, Elsevier, vol. 179(C), pages 604-624.
    5. Yao, Jian & Liu, Wenjie & Zhang, Lu & Tian, Binshou & Dai, Yanjun & Huang, Mingjun, 2020. "Performance analysis of a residential heating system using borehole heat exchanger coupled with solar assisted PV/T heat pump," Renewable Energy, Elsevier, vol. 160(C), pages 160-175.
    6. Huang, Shuai & Zhu, Ke & Dong, Jiankai & Li, Ji & Kong, Weizheng & Jiang, Yiqiang & Fang, Zhaohong, 2022. "Heat transfer performance of deep borehole heat exchanger with different operation modes," Renewable Energy, Elsevier, vol. 193(C), pages 645-656.
    7. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Hao & Yang, Ruitao & Wan, Rong & Shen, Lu, 2023. "Comparison of the experimental and numerical results of coaxial-type and U-type deep-buried pipes’ heat transfer performances," Renewable Energy, Elsevier, vol. 210(C), pages 95-106.
    8. Gascuel, Violaine & Rivard, Christine & Raymond, Jasmin, 2024. "Deep geothermal doublets versus deep borehole heat exchangers: A comparative study for cold sedimentary basins," Applied Energy, Elsevier, vol. 361(C).
    9. Ekmekci, Ece & Ozturk, Z. Fatih & Sisman, Altug, 2023. "Collective behavior of boreholes and its optimization to maximize BTES performance," Applied Energy, Elsevier, vol. 343(C).
    10. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
    11. Chen, Chaofan & Cai, Wanlong & Naumov, Dmitri & Tu, Kun & Zhou, Hongwei & Zhang, Yuping & Kolditz, Olaf & Shao, Haibing, 2021. "Numerical investigation on the capacity and efficiency of a deep enhanced U-tube borehole heat exchanger system for building heating," Renewable Energy, Elsevier, vol. 169(C), pages 557-572.
    12. Li, Chao & Jiang, Chao & Guan, Yanling & Tan, Zijing & Zhao, Zhiqiang & Zhou, Yang, 2022. "Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes," Energy, Elsevier, vol. 255(C).
    13. Jia, G.S. & Ma, Z.D. & Xia, Z.H. & Zhang, Y.P. & Xue, Y.Z. & Chai, J.C. & Jin, L.W., 2022. "A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions," Renewable Energy, Elsevier, vol. 182(C), pages 296-313.
    14. Jun Liu & Yuping Zhang & Zeyuan Wang & Cong Zhou & Boyang Liu & Fenghao Wang, 2023. "Medium Rock-Soil Temperature Distribution Characteristics at Different Time Scales and New Layout Forms in the Application of Medium-Deep Borehole Heat Exchangers," Energies, MDPI, vol. 16(19), pages 1-22, October.
    15. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yibin & Zhang, Yanjun & Xie, Yangyang & Zhang, Yu & Gao, Xuefeng & Ma, Jingchen, 2020. "Field test and numerical investigation on deep coaxial borehole heat exchanger based on distributed optical fiber temperature sensor," Energy, Elsevier, vol. 210(C).
    2. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    3. Chen, Chaofan & Cai, Wanlong & Naumov, Dmitri & Tu, Kun & Zhou, Hongwei & Zhang, Yuping & Kolditz, Olaf & Shao, Haibing, 2021. "Numerical investigation on the capacity and efficiency of a deep enhanced U-tube borehole heat exchanger system for building heating," Renewable Energy, Elsevier, vol. 169(C), pages 557-572.
    4. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    5. Jun Liu & Yuping Zhang & Zeyuan Wang & Cong Zhou & Boyang Liu & Fenghao Wang, 2023. "Medium Rock-Soil Temperature Distribution Characteristics at Different Time Scales and New Layout Forms in the Application of Medium-Deep Borehole Heat Exchangers," Energies, MDPI, vol. 16(19), pages 1-22, October.
    6. Yu, Han & Xu, Tianfu & Yuan, Yilong & Feng, Bo & ShangGuan, Shuantong, 2023. "Enhanced heat extraction performance from deep buried U-shaped well using the high-pressure jet grouting technology," Renewable Energy, Elsevier, vol. 202(C), pages 1377-1386.
    7. Yu, Han & Xu, Tianfu & Yuan, Yilong & Gherardi, Fabrizio & Feng, Bo & Jiang, Zhenjiao & Hu, Zixu, 2021. "Enhanced heat extraction for deep borehole heat exchanger through the jet grouting method using high thermal conductivity material," Renewable Energy, Elsevier, vol. 177(C), pages 1102-1115.
    8. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    9. Luo, Yongqiang & Xu, Guozhi & Cheng, Nan, 2021. "Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers," Renewable Energy, Elsevier, vol. 179(C), pages 604-624.
    10. Cheng, Sharon W.Y. & Kurnia, Jundika C. & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2019. "Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method," Energy, Elsevier, vol. 188(C).
    11. Jia, G.S. & Ma, Z.D. & Xia, Z.H. & Zhang, Y.P. & Xue, Y.Z. & Chai, J.C. & Jin, L.W., 2022. "A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions," Renewable Energy, Elsevier, vol. 182(C), pages 296-313.
    12. Zhen Zhao & Guangxiong Qin & Huijuan Chen & Linchao Yang & Songhe Geng & Ronghua Wen & Liang Zhang, 2022. "Numerical Simulation and Economic Evaluation of Wellbore Self-Circulation for Heat Extraction Using Cluster Horizontal Wells," Energies, MDPI, vol. 15(9), pages 1-26, April.
    13. Theo Renaud & Lehua Pan & Hannah Doran & Gioia Falcone & Patrick G. Verdin, 2021. "Numerical Analysis of Enhanced Conductive Deep Borehole Heat Exchangers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    14. Tang, Hewei & Xu, Boyue & Hasan, A. Rashid & Sun, Zhuang & Killough, John, 2019. "Modeling wellbore heat exchangers: Fully numerical to fully analytical solutions," Renewable Energy, Elsevier, vol. 133(C), pages 1124-1135.
    15. Dai, Jiacheng & Li, Jingbin & Wang, Tianyu & Zhu, Liying & Tian, Kangjian & Chen, Zhaoting, 2023. "Thermal performance analysis of coaxial borehole heat exchanger using liquid ammonia," Energy, Elsevier, vol. 263(PE).
    16. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Hao & Yang, Ruitao & Wan, Rong & Shen, Lu, 2023. "Comparison of the experimental and numerical results of coaxial-type and U-type deep-buried pipes’ heat transfer performances," Renewable Energy, Elsevier, vol. 210(C), pages 95-106.
    17. Isa Kolo & Christopher S. Brown & Gioia Falcone & David Banks, 2023. "Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate," Sustainability, MDPI, vol. 15(5), pages 1-24, February.
    18. Li, Chao & Jiang, Chao & Guan, Yanling & Tan, Zijing & Zhao, Zhiqiang & Zhou, Yang, 2022. "Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes," Energy, Elsevier, vol. 255(C).
    19. Zheng, Jianqiao & Zhang, Yanjun & Huang, Yibin & Liu, Qiangbin & Cheng, Yuxiang & Guo, Jixiang, 2024. "Numerical investigation on heat transfer performance of the segmented cementing coaxial heat exchanger," Renewable Energy, Elsevier, vol. 220(C).
    20. Li, Chao & Guan, Yanling & Jiang, Chao & Deng, Shunxi & Lu, Zhenzhen, 2020. "Numerical study on the heat transfer, extraction, and storage in a deep-buried pipe," Renewable Energy, Elsevier, vol. 152(C), pages 1055-1066.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:384-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.