IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v170y2016icp148-160.html
   My bibliography  Save this article

Sensitivity analysis of a vertical geothermal heat pump system

Author

Listed:
  • Han, Chanjuan
  • Yu, Xiong (Bill)

Abstract

This paper conducts sensitivity analyses on factors affecting the performance of vertical geothermal heat pump system, aiming to formulate design and operation strategies to improve its performance. It firstly describes the development of a 3D coupled Finite Element Model (FEM), which is utilized to simulate the steady state and transient behaviors of geothermal heat exchanger (GHE). The model holistically couples the heat exchange processes between pipe fluid flow, grouting backfill material, and adjacent ground associated with GHE. The model is firstly validated by comparison with the experimental data from an in-service GHE. Base on the calibrated model, a series of sensitivity analyses are conducted on the influence of geological, design, and operational factors intermittent operation mode of GHE achieves higher such as the initial ground temperature profile, GHE pipe installation depth, circulation fluid flow velocity, inlet temperature, subsurface water flow velocity, and material thermal properties. It also assess the behaviors of GHE under continuous operation versus intermittent operation modes. The results show that both design parameter (i.e., GHE pipe installation depth) and operational parameters (i.e., circulation fluid flow velocity) have major influence on the GHE performance. For a certain design length of GHE, the GHE performance improves with higher circulation fluid flow velocity until beyond a critical velocity. For GHE working in the heating mode, the heat extraction by GHE increases with decreasing fluid temperature at the inlet. In the geological factor aspect, the thermal conductivity of the ground material plays a very important role on the GHE performance operating in the continuous operation mode, while its specific heat capacity exerts no appreciable influence. However, for intermittent operation mode, both thermal conductivity and specific heat capacity of the ground, particularly the grouting materials, affect the ground thermal energy extraction. The results also showed that the presence of subsurface ground water flow improves the heat exchange of GHE. Operation wise, the GHE achieves higher performance and Coefficient of Performance (COP) under intermittent operation mode than under continuous operation mode. These observations point to ways to improve the performance of GHE from both design and operation aspects.

Suggested Citation

  • Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
  • Handle: RePEc:eee:appene:v:170:y:2016:i:c:p:148-160
    DOI: 10.1016/j.apenergy.2016.02.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916302252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.02.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Yan & Dong, Ming & Li, Sufen, 2014. "Intermittent experimental study of a vertical ground source heat pump system," Applied Energy, Elsevier, vol. 136(C), pages 628-635.
    2. Montagud, Carla & Corberán, José Miguel & Ruiz-Calvo, Félix, 2013. "Experimental and modeling analysis of a ground source heat pump system," Applied Energy, Elsevier, vol. 109(C), pages 328-336.
    3. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kang, Han-byul, 2014. "Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects," Applied Energy, Elsevier, vol. 125(C), pages 165-178.
    4. Cui, Ping & Li, Xin & Man, Yi & Fang, Zhaohong, 2011. "Heat transfer analysis of pile geothermal heat exchangers with spiral coils," Applied Energy, Elsevier, vol. 88(11), pages 4113-4119.
    5. Tye-Gingras, Maxime & Gosselin, Louis, 2014. "Generic ground response functions for ground exchangers in the presence of groundwater flow," Renewable Energy, Elsevier, vol. 72(C), pages 354-366.
    6. Seama Koohi-Fayegh & Marc A. Rosen, 2013. "A Review of the Modelling of Thermally Interacting Multiple Boreholes," Sustainability, MDPI, vol. 5(6), pages 1-18, June.
    7. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    8. Zarrella, Angelo & De Carli, Michele, 2013. "Heat transfer analysis of short helical borehole heat exchangers," Applied Energy, Elsevier, vol. 102(C), pages 1477-1491.
    9. Wang, Deqi & Lu, Lin & Zhang, Wenke & Cui, Ping, 2015. "Numerical and analytical analysis of groundwater influence on the pile geothermal heat exchanger with cast-in spiral coils," Applied Energy, Elsevier, vol. 160(C), pages 705-714.
    10. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    11. Capozza, Antonio & De Carli, Michele & Zarrella, Angelo, 2013. "Investigations on the influence of aquifers on the ground temperature in ground-source heat pump operation," Applied Energy, Elsevier, vol. 107(C), pages 350-363.
    12. Chung, Jin Taek & Choi, Jong Min, 2012. "Design and performance study of the ground-coupled heat pump system with an operating parameter," Renewable Energy, Elsevier, vol. 42(C), pages 118-124.
    13. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    14. Al-Zyoud, S. & Rühaak, W. & Sass, I., 2014. "Dynamic numerical modeling of the usage of groundwater for cooling in north east Jordan – A geothermal case study," Renewable Energy, Elsevier, vol. 62(C), pages 63-72.
    15. Casasso, Alessandro & Sethi, Rajandrea, 2014. "Efficiency of closed loop geothermal heat pumps: A sensitivity analysis," Renewable Energy, Elsevier, vol. 62(C), pages 737-746.
    16. Li, Min & Lai, Alvin C.K., 2012. "Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers," Applied Energy, Elsevier, vol. 96(C), pages 451-458.
    17. Zarrella, Angelo & Capozza, Antonio & De Carli, Michele, 2013. "Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison," Applied Energy, Elsevier, vol. 112(C), pages 358-370.
    18. Wagner, Valentin & Bayer, Peter & Kübert, Markus & Blum, Philipp, 2012. "Numerical sensitivity study of thermal response tests," Renewable Energy, Elsevier, vol. 41(C), pages 245-253.
    19. Jun, Liu & Xu, Zhang & Jun, Gao & Jie, Yang, 2009. "Evaluation of heat exchange rate of GHE in geothermal heat pump systems," Renewable Energy, Elsevier, vol. 34(12), pages 2898-2904.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    2. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    3. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    4. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    5. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    6. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    7. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    8. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
    9. Casasso, Alessandro & Sethi, Rajandrea, 2015. "Modelling thermal recycling occurring in groundwater heat pumps (GWHPs)," Renewable Energy, Elsevier, vol. 77(C), pages 86-93.
    10. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    11. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
    12. Zhou, Yang & Zheng, Zhi-xiang & Zhao, Guang-si, 2022. "Analytical models for heat transfer around a single ground heat exchanger in the presence of both horizontal and vertical groundwater flow considering a convective boundary condition," Energy, Elsevier, vol. 245(C).
    13. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    14. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    15. Ma, Z.D. & Jia, G.S. & Cui, X. & Xia, Z.H. & Zhang, Y.P. & Jin, L.W., 2020. "Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer," Applied Energy, Elsevier, vol. 276(C).
    16. Zhao, Zilong & Lin, Yu-Feng & Stumpf, Andrew & Wang, Xinlei, 2022. "Assessing impacts of groundwater on geothermal heat exchangers: A review of methodology and modeling," Renewable Energy, Elsevier, vol. 190(C), pages 121-147.
    17. Pandey, Navdeep & Murugesan, K. & Thomas, H.R., 2017. "Optimization of ground heat exchangers for space heating and cooling applications using Taguchi method and utility concept," Applied Energy, Elsevier, vol. 190(C), pages 421-438.
    18. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    19. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    20. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:170:y:2016:i:c:p:148-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.