IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip2p2696-2707.html
   My bibliography  Save this article

Analytical solutions for predicting thermal plumes of groundwater heat pump systems

Author

Listed:
  • Pophillat, William
  • Attard, Guillaume
  • Bayer, Peter
  • Hecht-Méndez, Jozsef
  • Blum, Philipp

Abstract

Groundwater heat pump (GWHP) systems have gained attention for space heating and cooling due to their efficiency and low installation costs. Their number is growing in many countries, and therefore in some areas, dense installations are expected. This might lead to thermal interferences between neighbouring groundwater wells and a decrease in efficiency. In the presented study, three analytical formulations are inspected for the prediction of the thermal plume around such open-loop systems under various hydrogeological conditions. A thermal radial transport scenario without background groundwater flow and two advective scenarios with moderate to significant ambient flow velocities (1 and 10 m d−1) are analytically simulated and compared with numerical simulations. Two-dimensional (2D) numerical models are used to estimate the validity of analytical results for a homogeneous confined aquifer, without considering heat transfer in upper and lower layers of the aquifer. In order to represent more realistic aquifer conditions of limited vertical extension, an additional three-dimensional numerical model (3D) is deployed to account for vertical heat losses. The estimated relative errors indicate that the analytical solution of the radial heat transport is in good agreement with both numerical model results. For the advective scenarios, the suitability of the linear and planar advective heat transport models strongly depend on ambient groundwater flow velocity and well injection rate. For low groundwater velocities (1 m d−1), the planar model fits both numerical model results better than the linear advective model. However, the planar model's ability to estimate thermal plumes considerably decreases for high injection rates (>0.6 l s−1). In contrast, the linear advective model shows a good agreement with the two-dimensional numerical results for high groundwater flow conditions (≥10 m d−1). The comparison with the three-dimensional numerical models indicates that the vertical heat transfer is challenging for all of the selected analytical solutions. Despite this, there is a wide range of applicability for the provided analytical solutions in studying the thermal impact of GWHP systems. Hence, the inspected solutions prove to be useful candidates for first-tier impact assessment in crowded areas with potential thermal interferences.

Suggested Citation

  • Pophillat, William & Attard, Guillaume & Bayer, Peter & Hecht-Méndez, Jozsef & Blum, Philipp, 2020. "Analytical solutions for predicting thermal plumes of groundwater heat pump systems," Renewable Energy, Elsevier, vol. 147(P2), pages 2696-2707.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p2:p:2696-2707
    DOI: 10.1016/j.renene.2018.07.148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118309455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herbert, Alan & Arthur, Simon & Chillingworth, Grace, 2013. "Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool," Applied Energy, Elsevier, vol. 109(C), pages 94-103.
    2. Blum, Philipp & Campillo, Gisela & Münch, Wolfram & Kölbel, Thomas, 2010. "CO2 savings of ground source heat pump systems – A regional analysis," Renewable Energy, Elsevier, vol. 35(1), pages 122-127.
    3. Bruno Piga & Alessandro Casasso & Francesca Pace & Alberto Godio & Rajandrea Sethi, 2017. "Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models," Energies, MDPI, vol. 10(9), pages 1-19, September.
    4. Bloemendal, Martin & Olsthoorn, Theo & Boons, Frank, 2014. "How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage," Energy Policy, Elsevier, vol. 66(C), pages 104-114.
    5. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    6. Saner, Dominik & Juraske, Ronnie & Kübert, Markus & Blum, Philipp & Hellweg, Stefanie & Bayer, Peter, 2010. "Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1798-1813, September.
    7. Zhou, Xuezhi & Gao, Qing & Chen, Xiangliang & Yu, Ming & Zhao, Xiaowen, 2013. "Numerically simulating the thermal behaviors in groundwater wells of groundwater heat pump," Energy, Elsevier, vol. 61(C), pages 240-247.
    8. Wagner, Valentin & Bayer, Peter & Kübert, Markus & Blum, Philipp, 2012. "Numerical sensitivity study of thermal response tests," Renewable Energy, Elsevier, vol. 41(C), pages 245-253.
    9. Casasso, Alessandro & Sethi, Rajandrea, 2015. "Modelling thermal recycling occurring in groundwater heat pumps (GWHPs)," Renewable Energy, Elsevier, vol. 77(C), pages 86-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Randa Permanda & Tomoyuki Ohtani, 2022. "Thermal Impact by Open-Loop Geothermal Heat Pump Systems in Two Different Local Underground Conditions on the Alluvial Fan of the Nagara River, Gifu City, Central Japan," Energies, MDPI, vol. 15(18), pages 1-19, September.
    2. Taha Sezer & Abubakar Kawuwa Sani & Rao Martand Singh & Liang Cui, 2023. "Laboratory Investigation of Impact of Injection–Abstraction Rate and Groundwater Flow Velocity on Groundwater Heat Pump Performance," Energies, MDPI, vol. 16(19), pages 1-19, October.
    3. Elżbieta Hałaj & Jarosław Kotyza & Marek Hajto & Grzegorz Pełka & Wojciech Luboń & Paweł Jastrzębski, 2021. "Upgrading a District Heating System by Means of the Integration of Modular Heat Pumps, Geothermal Waters, and PVs for Resilient and Sustainable Urban Energy," Energies, MDPI, vol. 14(9), pages 1-17, April.
    4. Halilovic, Smajil & Böttcher, Fabian & Zosseder, Kai & Hamacher, Thomas, 2023. "Optimizing the spatial arrangement of groundwater heat pumps and their well locations," Renewable Energy, Elsevier, vol. 217(C).
    5. Serianz, Luka & Rman, Nina & Golobič, Iztok & Brenčič, Mihael, 2022. "Groundwater heat transfer and thermal outflow plume modelling in the Alps," Renewable Energy, Elsevier, vol. 182(C), pages 751-763.
    6. Taha Sezer & Abubakar Kawuwa Sani & Rao Martand Singh & Liang Cui, 2023. "Numerical Investigation and Optimization of a District-Scale Groundwater Heat Pump System," Energies, MDPI, vol. 16(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    3. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    4. Manon Bulté & Thierry Duren & Olivier Bouhon & Estelle Petitclerc & Mathieu Agniel & Alain Dassargues, 2021. "Numerical Modeling of the Interference of Thermally Unbalanced Aquifer Thermal Energy Storage Systems in Brussels (Belgium)," Energies, MDPI, vol. 14(19), pages 1-17, September.
    5. Böttcher, Fabian & Casasso, Alessandro & Götzl, Gregor & Zosseder, Kai, 2019. "TAP - Thermal aquifer Potential: A quantitative method to assess the spatial potential for the thermal use of groundwater," Renewable Energy, Elsevier, vol. 142(C), pages 85-95.
    6. Francesco, Tinti & Annamaria, Pangallo & Martina, Berneschi & Dario, Tosoni & Dušan, Rajver & Simona, Pestotnik & Dalibor, Jovanović & Tomislav, Rudinica & Slavisa, Jelisić & Branko, Zlokapa & Attilio, 2016. "How to boost shallow geothermal energy exploitation in the adriatic area: the LEGEND project experience," Energy Policy, Elsevier, vol. 92(C), pages 190-204.
    7. Stemmle, Ruben & Blum, Philipp & Schüppler, Simon & Fleuchaus, Paul & Limoges, Melissa & Bayer, Peter & Menberg, Kathrin, 2021. "Environmental impacts of aquifer thermal energy storage (ATES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Anis Akrouch, Ghassan & Sánchez, Marcelo & Briaud, Jean-Louis, 2020. "Thermal performance and economic study of an energy piles system under cooling dominated conditions," Renewable Energy, Elsevier, vol. 147(P2), pages 2736-2747.
    9. Casasso, Alessandro & Sethi, Rajandrea, 2017. "Assessment and mapping of the shallow geothermal potential in the province of Cuneo (Piedmont, NW Italy)," Renewable Energy, Elsevier, vol. 102(PB), pages 306-315.
    10. Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
    11. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    12. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    13. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    14. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    16. Beernink, Stijn & Bloemendal, Martin & Kleinlugtenbelt, Rob & Hartog, Niels, 2022. "Maximizing the use of aquifer thermal energy storage systems in urban areas: effects on individual system primary energy use and overall GHG emissions," Applied Energy, Elsevier, vol. 311(C).
    17. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    18. Martina Gizzi & Federico Vagnon & Glenda Taddia & Stefano Lo Russo, 2023. "A Review of Groundwater Heat Pump Systems in the Italian Framework: Technological Potential and Environmental Limits," Energies, MDPI, vol. 16(12), pages 1-13, June.
    19. Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.
    20. Longcang Shu & Rui Xiao & Zhonghui Wen & Yuezan Tao & Peigui Liu, 2017. "Impact of Boundary Conditions on a Groundwater Heat Pump System Design in a Shallow and Thin Aquifer near the River," Sustainability, MDPI, vol. 9(5), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p2:p:2696-2707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.