IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp44-61.html
   My bibliography  Save this article

Investigation on the thermal response of steel pipe energy piles with different backfill materials

Author

Listed:
  • Cardoso de Freitas Murari, Milena
  • de Hollanda Cavalcanti Tsuha, Cristina
  • Loveridge, Fleur

Abstract

The use of geothermal energy piles (GEPs) associated with ground source heat pump systems is a sustainable and cost effective technology to heat and cool buildings, based on the efficient application of available resources found at the building site. Currently, a new building with GEPs is under construction at the University of São Paulo campus in São Paulo City, Brazil. Part of the building loads will be supported by steel pipe piles equipped with single U-type absorber pipes for heat exchange. To find the optimum solution of pile backfill material in terms of cost, constructability, sustainability and thermal performance, field thermal response tests were conducted on 4 instrumented piles filled with different materials: water, saturated sand, grout, and steel fiber grout. Both analytical and numerical models were used to evaluate the tested alternatives. The results showed that the thermal performance of the 4 piles is similar; however, the costs and sustainability aspects (low CO2 emissions) of the solutions using water or saturated sand imply that they are more advantageous than those using grout. Additionally, the experiments showed that for the pile backfilled with water the convection effects have improved the heat transfer to the soil.

Suggested Citation

  • Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:44-61
    DOI: 10.1016/j.renene.2022.08.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122012824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rees, S. W. & Adjali, M. H. & Zhou, Z. & Davies, M. & Thomas, H. R., 2000. "Ground heat transfer effects on the thermal performance of earth-contact structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(3), pages 213-265, September.
    2. Spitler, Jeffrey D. & Javed, Saqib & Ramstad, Randi Kalskin, 2016. "Natural convection in groundwater-filled boreholes used as ground heat exchangers," Applied Energy, Elsevier, vol. 164(C), pages 352-365.
    3. Liebel, Heiko T. & Javed, Saqib & Vistnes, Gunnar, 2012. "Multi-injection rate thermal response test with forced convection in a groundwater-filled borehole in hard rock," Renewable Energy, Elsevier, vol. 48(C), pages 263-268.
    4. Gustafsson, A.-M. & Westerlund, L., 2011. "Heat extraction thermal response test in groundwater-filled borehole heat exchanger – Investigation of the borehole thermal resistance," Renewable Energy, Elsevier, vol. 36(9), pages 2388-2394.
    5. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    6. Ren, Lian-wei & Xu, Jian & Kong, Gang-qiang & Liu, Han-long, 2020. "Field tests on thermal response characteristics of micro-steel-pipe pile under multiple temperature cycles," Renewable Energy, Elsevier, vol. 147(P1), pages 1098-1106.
    7. Kim, Daehoon & Kim, Gyoungman & Kim, Donghui & Baek, Hwanjo, 2017. "Experimental and numerical investigation of thermal properties of cement-based grouts used for vertical ground heat exchanger," Renewable Energy, Elsevier, vol. 112(C), pages 260-267.
    8. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Loveridge, Fleur & Madsen, Søren & Jensen, Rasmus Lund, 2018. "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests," Energy, Elsevier, vol. 145(C), pages 721-733.
    9. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Oleg Todorov & Kari Alanne & Markku Virtanen & Risto Kosonen, 2021. "Different Approaches for Evaluation and Modeling of the Effective Thermal Resistance of Groundwater-Filled Boreholes," Energies, MDPI, vol. 14(21), pages 1-25, October.
    11. Cecinato, Francesco & Loveridge, Fleur A., 2015. "Influences on the thermal efficiency of energy piles," Energy, Elsevier, vol. 82(C), pages 1021-1033.
    12. Cao, Ziming & Zhang, Guozhu & Liu, Yiping & Zhao, Xu & Li, Chenglin, 2022. "Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile," Renewable Energy, Elsevier, vol. 184(C), pages 374-390.
    13. Johnsson, Josef & Adl-Zarrabi, Bijan, 2019. "Modelling and evaluation of groundwater filled boreholes subjected to natural convection," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Loveridge, Fleur & Powrie, William, 2013. "Temperature response functions (G-functions) for single pile heat exchangers," Energy, Elsevier, vol. 57(C), pages 554-564.
    15. Jalaluddin, & Miyara, Akio & Tsubaki, Koutaro & Inoue, Shuntaro & Yoshida, Kentaro, 2011. "Experimental study of several types of ground heat exchanger using a steel pile foundation," Renewable Energy, Elsevier, vol. 36(2), pages 764-771.
    16. Virgilio Ciancio & Serena Falasca & Iacopo Golasi & Pieter de Wilde & Massimo Coppi & Livio de Santoli & Ferdinando Salata, 2019. "Resilience of a Building to Future Climate Conditions in Three European Cities," Energies, MDPI, vol. 12(23), pages 1-15, November.
    17. Wagner, Valentin & Bayer, Peter & Kübert, Markus & Blum, Philipp, 2012. "Numerical sensitivity study of thermal response tests," Renewable Energy, Elsevier, vol. 41(C), pages 245-253.
    18. Marcotte, D. & Pasquier, P., 2008. "On the estimation of thermal resistance in borehole thermal conductivity test," Renewable Energy, Elsevier, vol. 33(11), pages 2407-2415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmi, Giuseppe & Bottarelli, Michele, 2023. "Enhancement of shallow ground heat exchanger with phase change material," Renewable Energy, Elsevier, vol. 206(C), pages 828-837.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    2. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    3. Oleg Todorov & Kari Alanne & Markku Virtanen & Risto Kosonen, 2021. "Different Approaches for Evaluation and Modeling of the Effective Thermal Resistance of Groundwater-Filled Boreholes," Energies, MDPI, vol. 14(21), pages 1-25, October.
    4. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Linden Jensen-Page & Fleur Loveridge & Guillermo A. Narsilio, 2019. "Thermal Response Testing of Large Diameter Energy Piles," Energies, MDPI, vol. 12(14), pages 1-25, July.
    7. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
    8. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    9. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
    10. Tsubaki, Koutaro & Mitsutake, Yuichi, 2016. "Performance of ground-source heat exchangers using short residential foundation piles," Energy, Elsevier, vol. 104(C), pages 229-236.
    11. Javed, Saqib & Spitler, Jeffrey, 2017. "Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers," Applied Energy, Elsevier, vol. 187(C), pages 790-806.
    12. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    13. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    14. Spitler, Jeffrey D. & Javed, Saqib & Ramstad, Randi Kalskin, 2016. "Natural convection in groundwater-filled boreholes used as ground heat exchangers," Applied Energy, Elsevier, vol. 164(C), pages 352-365.
    15. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    16. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
    17. Hakala, Petri & Vallin, Sami & Arola, Teppo & Martinkauppi, Ilkka, 2022. "Novel use of the enhanced thermal response test in crystalline bedrock," Renewable Energy, Elsevier, vol. 182(C), pages 467-482.
    18. Cao, Ziming & Zhang, Guozhu & Liu, Yiping & Zhao, Xu & Li, Chenglin, 2022. "Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile," Renewable Energy, Elsevier, vol. 184(C), pages 374-390.
    19. Georgiadis, Konstantinos & Skordas, Dimitrios & Kamas, Ioannis & Comodromos, Emilios, 2020. "Heating and cooling induced stresses and displacements in heat exchanger piles in sand," Renewable Energy, Elsevier, vol. 147(P2), pages 2599-2617.
    20. Faizal, Mohammed & Bouazza, Abdelmalek & McCartney, John S., 2022. "Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients," Renewable Energy, Elsevier, vol. 190(C), pages 1066-1077.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:44-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.