IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp445-453.html
   My bibliography  Save this article

Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling

Author

Listed:
  • Bayer, Peter
  • de Paly, Michael
  • Beck, Markus

Abstract

A mathematical procedure for optimization of borehole heat exchanger (BHE) fields is presented. If heat extraction and injection is not seasonally balanced, thermal anomalies grow in the ground. These are commonly constrained by regulations and not desirable due to potential decline of the system’s performance. We demonstrate, for the case with heat extraction and only partial replenishment, how adjustment of seasonal heating and cooling workloads can mitigate local cooling of the ground. It is revealed that the benefit from mathematical optimization increases with heat extraction/injection imbalance. Evidently, strategic operation of individual BHEs in the field can to some extent compensate for the heat injection deficit. Additionally to the optimization of workloads, we inspect the required number of BHEs for a given heating/cooling demand. The idea is that by sequentially removing least effective BHEs in the field, investment cost are reduced, while the effect on the entire field performance is minimal. We show that such unfavorable BHEs exist mainly in non-optimized fields without replenishment. Thus, our work offer two ways of tuning BHE fields applied for geothermal heating and cooling: workload optimization of individual BHEs and removal of redundant BHEs for a given arrangement.

Suggested Citation

  • Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:445-453
    DOI: 10.1016/j.apenergy.2014.09.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914009763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Seong-Kyun & Bae, Gwang-Ok & Lee, Kang-Kun & Song, Yoonho, 2010. "Field-scale evaluation of the design of borehole heat exchangers for the use of shallow geothermal energy," Energy, Elsevier, vol. 35(2), pages 491-500.
    2. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    3. Kjellsson, Elisabeth & Hellström, Göran & Perers, Bengt, 2010. "Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings," Energy, Elsevier, vol. 35(6), pages 2667-2673.
    4. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    5. Casasso, Alessandro & Sethi, Rajandrea, 2014. "Efficiency of closed loop geothermal heat pumps: A sensitivity analysis," Renewable Energy, Elsevier, vol. 62(C), pages 737-746.
    6. Wagner, Valentin & Bayer, Peter & Kübert, Markus & Blum, Philipp, 2012. "Numerical sensitivity study of thermal response tests," Renewable Energy, Elsevier, vol. 41(C), pages 245-253.
    7. Dagdas, Ahmet, 2007. "Heat exchanger optimization for geothermal district heating systems: A fuel saving approach," Renewable Energy, Elsevier, vol. 32(6), pages 1020-1032.
    8. Lazzari, Stefano & Priarone, Antonella & Zanchini, Enzo, 2010. "Long-term performance of BHE (borehole heat exchanger) fields with negligible groundwater movement," Energy, Elsevier, vol. 35(12), pages 4966-4974.
    9. Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
    10. Park, Honghee & Lee, Joo Seoung & Kim, Wonuk & Kim, Yongchan, 2013. "The cooling seasonal performance factor of a hybrid ground-source heat pump with parallel and serial configurations," Applied Energy, Elsevier, vol. 102(C), pages 877-884.
    11. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    12. Zarrella, Angelo & Capozza, Antonio & De Carli, Michele, 2013. "Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison," Applied Energy, Elsevier, vol. 112(C), pages 358-370.
    13. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "Optimization of ground heat exchanger parameters of ground source heat pump system for space heating applications," Energy, Elsevier, vol. 78(C), pages 573-586.
    14. Koohi-Fayegh, Seama & Rosen, Marc A., 2012. "Examination of thermal interaction of multiple vertical ground heat exchangers," Applied Energy, Elsevier, vol. 97(C), pages 962-969.
    15. Fossa, Marco & Minchio, Fabio, 2013. "The effect of borefield geometry and ground thermal load profile on hourly thermal response of geothermal heat pump systems," Energy, Elsevier, vol. 51(C), pages 323-329.
    16. Pahud, D. & Belliardi, M. & Caputo, P., 2012. "Geocooling potential of borehole heat exchangers' systems applied to low energy office buildings," Renewable Energy, Elsevier, vol. 45(C), pages 197-204.
    17. Li, Min & Lai, Alvin C.K., 2013. "Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation," Applied Energy, Elsevier, vol. 104(C), pages 510-516.
    18. Liu, Y. & Qin, X.S. & Chiew, Y.M., 2013. "Investigation on potential applicability of subsurface cooling in Singapore," Applied Energy, Elsevier, vol. 103(C), pages 197-206.
    19. Beck, Markus & Bayer, Peter & de Paly, Michael & Hecht-Méndez, Jozsef & Zell, Andreas, 2013. "Geometric arrangement and operation mode adjustment in low-enthalpy geothermal borehole fields for heating," Energy, Elsevier, vol. 49(C), pages 434-443.
    20. Herbert, Alan & Arthur, Simon & Chillingworth, Grace, 2013. "Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool," Applied Energy, Elsevier, vol. 109(C), pages 94-103.
    21. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2012. "An analysis of heat flow through a borehole heat exchanger validated model," Applied Energy, Elsevier, vol. 92(C), pages 523-533.
    22. Zanchini, Enzo & Lazzari, Stefano & Priarone, Antonella, 2012. "Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow," Energy, Elsevier, vol. 38(1), pages 66-77.
    23. Marcotte, D. & Pasquier, P. & Sheriff, F. & Bernier, M., 2010. "The importance of axial effects for borehole design of geothermal heat-pump systems," Renewable Energy, Elsevier, vol. 35(4), pages 763-770.
    24. Alavy, Masih & Nguyen, Hiep V. & Leong, Wey H. & Dworkin, Seth B., 2013. "A methodology and computerized approach for optimizing hybrid ground source heat pump system design," Renewable Energy, Elsevier, vol. 57(C), pages 404-412.
    25. Zarrella, Angelo & De Carli, Michele, 2013. "Heat transfer analysis of short helical borehole heat exchangers," Applied Energy, Elsevier, vol. 102(C), pages 1477-1491.
    26. Sagia, Z. & Rakopoulos, C. & Kakaras, E., 2012. "Cooling dominated Hybrid Ground Source Heat Pump System application," Applied Energy, Elsevier, vol. 94(C), pages 41-47.
    27. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.
    28. Alavy, Masih & Dworkin, Seth B. & Leong, Wey H., 2014. "A design methodology and analysis of combining multiple buildings onto a single district hybrid ground source heat pump system," Renewable Energy, Elsevier, vol. 66(C), pages 515-522.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    3. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    4. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
    5. Shibin Geng & Yong Li & Xu Han & Huiliang Lian & Hua Zhang, 2016. "Evaluation of Thermal Anomalies in Multi-Boreholes Field Considering the Effects of Groundwater Flow," Sustainability, MDPI, vol. 8(6), pages 1-19, June.
    6. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    7. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    8. Beck, Markus & Bayer, Peter & de Paly, Michael & Hecht-Méndez, Jozsef & Zell, Andreas, 2013. "Geometric arrangement and operation mode adjustment in low-enthalpy geothermal borehole fields for heating," Energy, Elsevier, vol. 49(C), pages 434-443.
    9. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    10. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    11. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    13. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    14. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    15. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    16. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    17. Wu, Wei & Li, Xianting & You, Tian & Wang, Baolong & Shi, Wenxing, 2015. "Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions," Renewable Energy, Elsevier, vol. 84(C), pages 74-88.
    18. Alshehri, Faisal & Beck, Stephen & Ingham, Derek & Ma, Lin & Pourkashanian, Mohammed, 2021. "Sensitivity analysis of a vertical geothermal heat pump system in a hot dry climate," Renewable Energy, Elsevier, vol. 178(C), pages 785-801.
    19. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    20. Halilovic, Smajil & Böttcher, Fabian & Zosseder, Kai & Hamacher, Thomas, 2023. "Optimizing the spatial arrangement of groundwater heat pumps and their well locations," Renewable Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:445-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.