IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v127y2018icp825-834.html
   My bibliography  Save this item

Anomaly detection and fault analysis of wind turbine components based on deep learning network

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Marc-Alexander Lutz & Stephan Vogt & Volker Berkhout & Stefan Faulstich & Steffen Dienst & Urs Steinmetz & Christian Gück & Andres Ortega, 2020. "Evaluation of Anomaly Detection of an Autoencoder Based on Maintenace Information and Scada-Data," Energies, MDPI, vol. 13(5), pages 1-18, February.
  2. Majdi Mansouri & Khaled Dhibi & Hazem Nounou & Mohamed Nounou, 2022. "An Effective Fault Diagnosis Technique for Wind Energy Conversion Systems Based on an Improved Particle Swarm Optimization," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
  3. Peng Qian & Xiange Tian & Jamil Kanfoud & Joash Lap Yan Lee & Tat-Hean Gan, 2019. "A Novel Condition Monitoring Method of Wind Turbines Based on Long Short-Term Memory Neural Network," Energies, MDPI, vol. 12(18), pages 1-15, September.
  4. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
  5. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  6. Meng Li & Shuangxin Wang, 2019. "Dynamic Fault Monitoring of Pitch System in Wind Turbines using Selective Ensemble Small-World Neural Networks," Energies, MDPI, vol. 12(17), pages 1-20, August.
  7. Jastrzebska, Agnieszka & Morales Hernández, Alejandro & Nápoles, Gonzalo & Salgueiro, Yamisleydi & Vanhoof, Koen, 2022. "Measuring wind turbine health using fuzzy-concept-based drifting models," Renewable Energy, Elsevier, vol. 190(C), pages 730-740.
  8. Kouadri, Abdelmalek & Hajji, Mansour & Harkat, Mohamed-Faouzi & Abodayeh, Kamaleldin & Mansouri, Majdi & Nounou, Hazem & Nounou, Mohamed, 2020. "Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 150(C), pages 598-606.
  9. Yening Lai & Ling Zhu & Xueping Pan & Jinpeng Guo & Dazhuang He & Wei Liang, 2022. "Online Estimation of the Mechanical Parameters of a Wind Turbine with Doubly Fed Induction Generator by Utilizing Turbulence Excitations," Energies, MDPI, vol. 15(6), pages 1-14, March.
  10. Rami Al-Hajj & Ali Assi & Bilel Neji & Raymond Ghandour & Zaher Al Barakeh, 2023. "Transfer Learning for Renewable Energy Systems: A Survey," Sustainability, MDPI, vol. 15(11), pages 1-28, June.
  11. Adaiton Oliveira-Filho & Ryad Zemouri & Philippe Cambron & Antoine Tahan, 2023. "Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model," Energies, MDPI, vol. 16(12), pages 1-21, June.
  12. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
  13. Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
  14. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
  15. Choe, Do-Eun & Kim, Hyoung-Chul & Kim, Moo-Hyun, 2021. "Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades," Renewable Energy, Elsevier, vol. 174(C), pages 218-235.
  16. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
  17. Matthew Boeding & Kelly Boswell & Michael Hempel & Hamid Sharif & Juan Lopez & Kalyan Perumalla, 2022. "Survey of Cybersecurity Governance, Threats, and Countermeasures for the Power Grid," Energies, MDPI, vol. 15(22), pages 1-22, November.
  18. Paweł Knes & Phong B. Dao, 2024. "Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach," Energies, MDPI, vol. 17(20), pages 1-21, October.
  19. Jia Tian & Xingqin Zhang & Shuangqing Zheng & Zhiyong Liu & Changshu Zhan, 2024. "Synergising an Advanced Optimisation Technique with Deep Learning: A Novel Method in Fault Warning Systems," Mathematics, MDPI, vol. 12(9), pages 1-25, April.
  20. Rogerio Adriano da Fonseca Santiago & Natasha Benjamim Barbosa & Henrique Gomes Mergulhão & Tassio Farias de Carvalho & Alex Alisson Bandeira Santos & Ricardo Cerqueira Medrado & Jose Bione de Melo Fi, 2024. "Data-Driven Models Applied to Predictive and Prescriptive Maintenance of Wind Turbine: A Systematic Review of Approaches Based on Failure Detection, Diagnosis, and Prognosis," Energies, MDPI, vol. 17(5), pages 1-24, February.
  21. Deng, Ziwei & Li, Yuxuan & Zhu, Hongqiu & Huang, Keke & Tang, Zhaohui & Wang, Zhen, 2020. "Sparse stacked autoencoder network for complex system monitoring with industrial applications," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
  22. Conor McKinnon & James Carroll & Alasdair McDonald & Sofia Koukoura & David Infield & Conaill Soraghan, 2020. "Comparison of New Anomaly Detection Technique for Wind Turbine Condition Monitoring Using Gearbox SCADA Data," Energies, MDPI, vol. 13(19), pages 1-19, October.
  23. Aleksandra Grzesiek & Radosław Zimroz & Paweł Śliwiński & Norbert Gomolla & Agnieszka Wyłomańska, 2021. "A Method for Structure Breaking Point Detection in Engine Oil Pressure Data," Energies, MDPI, vol. 14(17), pages 1-24, September.
  24. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
  25. Tabar, Vahid Sohrabi & Ghassemzadeh, Saeid & Tohidi, Sajjad, 2021. "Increasing resiliency against information vulnerability of renewable resources in the operation of smart multi-area microgrid," Energy, Elsevier, vol. 220(C).
  26. Helbing, Georg & Ritter, Matthias, 2018. "Deep Learning for fault detection in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 189-198.
  27. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
  28. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
  29. Wu, Yueqi & Ma, Xiandong, 2022. "A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 554-566.
  30. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
  31. Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
  32. Kong, Ziqian & Tang, Baoping & Deng, Lei & Liu, Wenyi & Han, Yan, 2020. "Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units," Renewable Energy, Elsevier, vol. 146(C), pages 760-768.
  33. Zhang, Chen & Yang, Tao, 2021. "Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ," Renewable Energy, Elsevier, vol. 164(C), pages 1540-1549.
  34. Conor McKinnon & James Carroll & Alasdair McDonald & Sofia Koukoura & Charlie Plumley, 2021. "Investigation of Isolation Forest for Wind Turbine Pitch System Condition Monitoring Using SCADA Data," Energies, MDPI, vol. 14(20), pages 1-20, October.
  35. Shao, Kaixuan & He, Yigang & Xing, Zhikai & Du, Bolun, 2023. "Detecting wind turbine anomalies using nonlinear dynamic parameters-assisted machine learning with normal samples," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
  36. Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
  37. Konstantina Fotiadou & Terpsichori Helen Velivassaki & Artemis Voulkidis & Dimitrios Skias & Corrado De Santis & Theodore Zahariadis, 2020. "Proactive Critical Energy Infrastructure Protection via Deep Feature Learning," Energies, MDPI, vol. 13(10), pages 1-19, May.
  38. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
  39. Ahmad Y. Al Rashdan & Hany S. Abdel-Khalik & Kellen M. Giraud & Daniel G. Cole & Jacob A. Farber & William W. Clark & Abenezer Alemu & Marcus C. Allen & Ryan M. Spangler & Athi Varuttamaseni, 2022. "A Qualitative Strategy for Fusion of Physics into Empirical Models for Process Anomaly Detection," Energies, MDPI, vol. 15(15), pages 1-20, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.