IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11195-d908918.html
   My bibliography  Save this article

An Effective Fault Diagnosis Technique for Wind Energy Conversion Systems Based on an Improved Particle Swarm Optimization

Author

Listed:
  • Majdi Mansouri

    (Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar
    Department of Mathematical Sciences, Prince Sultan University, Riyadh 12435, Saudi Arabia)

  • Khaled Dhibi

    (Laboratory of Automatic Signal and Image Processing, National Engineering School of Monastir, Monastir 5035, Tunisia)

  • Hazem Nounou

    (Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar)

  • Mohamed Nounou

    (Chemical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar)

Abstract

The current paper proposes intelligent Fault Detection and Diagnosis (FDD) approaches, aimed to ensure the high-performance operation of Wind energy conversion (WEC) systems. First, an efficient feature selection algorithm based on particle swarm optimization (PSO) is proposed. The main idea behind the use of the PSO algorithm is to remove irrelevant features and extract only the most significant ones from raw data in order to improve the classification task using a neural networks classifier. Then, to overcome the problem of premature convergence and local sub-optimal areas when using the classical PSO optimization algorithm, an improved extension of the PSO algorithm is proposed. The basic idea behind this proposal is to use the Euclidean distance as a dissimilarity metric between observations in which a single observation is kept in case of redundancies. In addition, the proposed reduced PSO-NN (RPSO-NN) technique not only enhances the results in terms of accuracy but also provides a significant reduction in computation time and storage cost by reducing the size of the training dataset and removing irrelevant and redundant samples. The experimental results showed the robustness and high performance of the proposed diagnosis paradigms.

Suggested Citation

  • Majdi Mansouri & Khaled Dhibi & Hazem Nounou & Mohamed Nounou, 2022. "An Effective Fault Diagnosis Technique for Wind Energy Conversion Systems Based on an Improved Particle Swarm Optimization," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11195-:d:908918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helbing, Georg & Ritter, Matthias, 2018. "Deep Learning for fault detection in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 189-198.
    2. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    3. Zhao, Hongshan & Liu, Huihai & Hu, Wenjing & Yan, Xihui, 2018. "Anomaly detection and fault analysis of wind turbine components based on deep learning network," Renewable Energy, Elsevier, vol. 127(C), pages 825-834.
    4. Kouadri, Abdelmalek & Hajji, Mansour & Harkat, Mohamed-Faouzi & Abodayeh, Kamaleldin & Mansouri, Majdi & Nounou, Hazem & Nounou, Mohamed, 2020. "Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 150(C), pages 598-606.
    5. Dhibi, Khaled & Mansouri, Majdi & Bouzrara, Kais & Nounou, Hazem & Nounou, Mohamed, 2022. "Reduced neural network based ensemble approach for fault detection and diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 194(C), pages 778-787.
    6. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khadija Attouri & Majdi Mansouri & Mansour Hajji & Abdelmalek Kouadri & Kais Bouzrara & Hazem Nounou, 2023. "Wind Power Converter Fault Diagnosis Using Reduced Kernel PCA-Based BiLSTM," Sustainability, MDPI, vol. 15(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    2. Adaiton Oliveira-Filho & Ryad Zemouri & Philippe Cambron & Antoine Tahan, 2023. "Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model," Energies, MDPI, vol. 16(12), pages 1-21, June.
    3. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    4. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    6. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    7. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
    8. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
    9. Meng Li & Shuangxin Wang, 2019. "Dynamic Fault Monitoring of Pitch System in Wind Turbines using Selective Ensemble Small-World Neural Networks," Energies, MDPI, vol. 12(17), pages 1-20, August.
    10. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    11. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Marc-Alexander Lutz & Stephan Vogt & Volker Berkhout & Stefan Faulstich & Steffen Dienst & Urs Steinmetz & Christian Gück & Andres Ortega, 2020. "Evaluation of Anomaly Detection of an Autoencoder Based on Maintenace Information and Scada-Data," Energies, MDPI, vol. 13(5), pages 1-18, February.
    13. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Ghulam Moeen Uddin & Waqar Muhammad Ashraf & Karolina Grabowska & Anna Zylka & Anna Kulakowska & Wojciech Nowak, 2023. "Artificial Intelligence for Energy Processes and Systems: Applications and Perspectives," Energies, MDPI, vol. 16(8), pages 1-12, April.
    14. Dhibi, Khaled & Mansouri, Majdi & Bouzrara, Kais & Nounou, Hazem & Nounou, Mohamed, 2022. "Reduced neural network based ensemble approach for fault detection and diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 194(C), pages 778-787.
    15. Panagiotis Korkos & Jaakko Kleemola & Matti Linjama & Arto Lehtovaara, 2022. "Representation Learning for Detecting the Faults in a Wind Turbine Hydraulic Pitch System Using Deep Learning," Energies, MDPI, vol. 15(24), pages 1-17, December.
    16. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
    17. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    18. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    19. Wang, Anqi & Qian, Zheng & Pei, Yan & Jing, Bo, 2022. "A de-ambiguous condition monitoring scheme for wind turbines using least squares generative adversarial networks," Renewable Energy, Elsevier, vol. 185(C), pages 267-279.
    20. Antonio Lorenzo-Espejo & Alejandro Escudero-Santana & María-Luisa Muñoz-Díaz & Alicia Robles-Velasco, 2022. "Machine Learning-Based Analysis of a Wind Turbine Manufacturing Operation: A Case Study," Sustainability, MDPI, vol. 14(13), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11195-:d:908918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.