IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5055-d1496539.html
   My bibliography  Save this article

Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach

Author

Listed:
  • Paweł Knes

    (IBM Poland, Armii Krajowej 18, 30-150 Krakow, Poland)

  • Phong B. Dao

    (Department of Robotics and Mechatronics, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

Data-driven models have become powerful tools for structural and condition monitoring of engineering systems, particularly wind turbines. This paper presents a comparative analysis of common machine learning (ML) algorithms (artificial neural networks, linear regression, random forests, and gradient boosting) and a cointegration-based approach for fault detection using Supervisory Control and Data Acquisition (SCADA) data. While ML models offer early fault prediction, the cointegration method is simpler, requires less training data, and has lower computational costs. However, it is less effective for early detection. To balance these trade-offs, we propose a cascading monitoring framework, where the ML model provides long-term predictions (outer monitoring process) and the cointegration model offers short-term verification (inner monitoring process). The cointegration model serves to confirm anomalies flagged by the ML model. By combining both models in a cascade structure, the system reduces the risk of false alarms triggered by uncertainties in the ML model alone. Furthermore, the short-term cointegration-based prediction model helps pinpoint immediate risks and mitigate the issue of prolonged downtime. This combination enhances both accuracy and reliability, as demonstrated through testing on a five-year SCADA dataset from a commercial wind turbine with a known gearbox fault.

Suggested Citation

  • Paweł Knes & Phong B. Dao, 2024. "Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach," Energies, MDPI, vol. 17(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5055-:d:1496539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5055/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5055/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    2. Zhao, Hongshan & Liu, Huihai & Hu, Wenjing & Yan, Xihui, 2018. "Anomaly detection and fault analysis of wind turbine components based on deep learning network," Renewable Energy, Elsevier, vol. 127(C), pages 825-834.
    3. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    4. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Condition monitoring of wind turbine blades based on self-supervised health representation learning: A conducive technique to effective and reliable utilization of wind energy," Applied Energy, Elsevier, vol. 313(C).
    5. Meyer, Angela, 2021. "Multi-target normal behaviour models for wind farm condition monitoring," Applied Energy, Elsevier, vol. 300(C).
    6. Peter M. Attia & Aditya Grover & Norman Jin & Kristen A. Severson & Todor M. Markov & Yang-Hung Liao & Michael H. Chen & Bryan Cheong & Nicholas Perkins & Zi Yang & Patrick K. Herring & Muratahan Ayko, 2020. "Closed-loop optimization of fast-charging protocols for batteries with machine learning," Nature, Nature, vol. 578(7795), pages 397-402, February.
    7. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    8. Dao, Phong B. & Barszcz, Tomasz & Staszewski, Wieslaw J., 2024. "Anomaly detection of wind turbines based on stationarity analysis of SCADA data," Renewable Energy, Elsevier, vol. 232(C).
    9. Phong B. Dao, 2023. "On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data," Energies, MDPI, vol. 16(5), pages 1-17, March.
    10. Chandrasekhar, Kartik & Stevanovic, Nevena & Cross, Elizabeth J. & Dervilis, Nikolaos & Worden, Keith, 2021. "Damage detection in operational wind turbine blades using a new approach based on machine learning," Renewable Energy, Elsevier, vol. 168(C), pages 1249-1264.
    11. Castellani, Francesco & Astolfi, Davide & Sdringola, Paolo & Proietti, Stefania & Terzi, Ludovico, 2017. "Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment," Applied Energy, Elsevier, vol. 185(P2), pages 1076-1086.
    12. Konrad Zolna & Phong B. Dao & Wieslaw J. Staszewski & Tomasz Barszcz, 2015. "Nonlinear Cointegration Approach for Condition Monitoring of Wind Turbines," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    2. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    3. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    4. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
    5. Phong B. Dao, 2023. "On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data," Energies, MDPI, vol. 16(5), pages 1-17, March.
    6. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
    7. Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
    8. Weiwu Feng & Da Yang & Wenxue Du & Qiang Li, 2023. "In Situ Structural Health Monitoring of Full-Scale Wind Turbine Blades in Operation Based on Stereo Digital Image Correlation," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    9. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    10. Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
    11. Qu, Fuming & Liu, Jinhai & Zhu, Hongfei & Zhou, Bowen, 2020. "Wind turbine fault detection based on expanded linguistic terms and rules using non-singleton fuzzy logic," Applied Energy, Elsevier, vol. 262(C).
    12. Shulin Li & Fuqiang Tian & Haitao He & Hongqi Liu & Shifu Zhang & Yudi Li, 2024. "Investigation on Overvoltage Distribution in Stator Windings of Permanent Magnet Synchronous Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-15, August.
    13. Czujack, Corinna & Flôres Junior, Renato Galvão & Ginsburgh, Victor, 1995. "On long-run price comovements between paintings and prints," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 269, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    14. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2016. "Does a small cost share reflect a negligible role for energy in economic production? Testing for aggregate production functions including capital, labor, and useful exergy through a cointegration-base," MPRA Paper 70850, University Library of Munich, Germany.
    15. Law, Siong Hook & Tan, Hui & baharumshah, ahmad, 1999. "Financial Liberalization in ASEAN and the Fisher Hypothesis," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 33, pages 65-86.
    16. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2015. "Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution," Economic Modelling, Elsevier, vol. 44(C), pages 104-115.
    17. Gevorkyan, Arkady & Semmler, Willi, 2016. "Oil price, overleveraging and shakeout in the shale energy sector — Game changers in the oil industry," Economic Modelling, Elsevier, vol. 54(C), pages 244-259.
    18. Growitsch Christian & Nepal Rabindra & Stronzik Marcus, 2015. "Price Convergence and Information Efficiency in German Natural Gas Markets," German Economic Review, De Gruyter, vol. 16(1), pages 87-103, February.
    19. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    20. Md.Yousuf & Raju Ahmed & Nasrin Akther Lubna & Shah Md. Sumon, 2019. "Estimating the Services Sector Impact on Economic Growth of Bangladesh: An Econometric Investigation," Asian Journal of Economic Modelling, Asian Economic and Social Society, vol. 7(2), pages 62-72, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5055-:d:1496539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.