IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v220y2021ics0360544221000256.html
   My bibliography  Save this article

Increasing resiliency against information vulnerability of renewable resources in the operation of smart multi-area microgrid

Author

Listed:
  • Tabar, Vahid Sohrabi
  • Ghassemzadeh, Saeid
  • Tohidi, Sajjad

Abstract

With the widespread use of information and communication technologies in smart grids, the vulnerability of these networks has increased significantly. In this paper, the operation of a smart electrical energy system is evaluated by considering the information vulnerability of renewable generators and their sensors. Hence, the false data injection process is modelled by the probability distribution function and different deviations to achieve real conditions. Since the attackers may have various information, an observation-action method is utilized to enhance their capability. Accordingly, an auxiliary variable is considered for real-time decisions and any modification which is required in the process. In return, to resilience the system and mitigate the impact of false data injection, a machine learning method, namely adaptive neuro fuzzy inference system, is used based on a threshold index. Implementing the method on a smart multi-area microgrid shows that if all data points are exposed to attack, the operation cost will be affected by about 8.52% and at least 70% of the false data into each sensor will be detectable. Moreover, sensitivity analysis validates that the wrong decision may be taken by attackers in real-time and, the percentage of detection will decrease if the threshold index increases.

Suggested Citation

  • Tabar, Vahid Sohrabi & Ghassemzadeh, Saeid & Tohidi, Sajjad, 2021. "Increasing resiliency against information vulnerability of renewable resources in the operation of smart multi-area microgrid," Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544221000256
    DOI: 10.1016/j.energy.2021.119776
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221000256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Huaizhi & Meng, Anjian & Liu, Yitao & Fu, Xueqian & Cao, Guangzhong, 2019. "Unscented Kalman Filter based interval state estimation of cyber physical energy system for detection of dynamic attack," Energy, Elsevier, vol. 188(C).
    2. Anda, Martin & Temmen, Justin, 2014. "Smart metering for residential energy efficiency: The use of community based social marketing for behavioural change and smart grid introduction," Renewable Energy, Elsevier, vol. 67(C), pages 119-127.
    3. Zhao, Hongshan & Liu, Huihai & Hu, Wenjing & Yan, Xihui, 2018. "Anomaly detection and fault analysis of wind turbine components based on deep learning network," Renewable Energy, Elsevier, vol. 127(C), pages 825-834.
    4. Tabar, Vahid Sohrabi & Abbasi, Vahid, 2019. "Energy management in microgrid with considering high penetration of renewable resources and surplus power generation problem," Energy, Elsevier, vol. 189(C).
    5. Mansouri, Majdi & Hajji, Mansour & Trabelsi, Mohamed & Harkat, Mohamed Faouzi & Al-khazraji, Ayman & Livera, Andreas & Nounou, Hazem & Nounou, Mohamed, 2018. "An effective statistical fault detection technique for grid connected photovoltaic systems based on an improved generalized likelihood ratio test," Energy, Elsevier, vol. 159(C), pages 842-856.
    6. Tabar, Vahid Sohrabi & Ghassemzadeh, Saeid & Tohidi, Sajjad, 2019. "Energy management in hybrid microgrid with considering multiple power market and real time demand response," Energy, Elsevier, vol. 174(C), pages 10-23.
    7. Hur, S. & Recalde-Camacho, L. & Leithead, W.E., 2017. "Detection and compensation of anomalous conditions in a wind turbine," Energy, Elsevier, vol. 124(C), pages 74-86.
    8. Belaout, A. & Krim, F. & Mellit, A. & Talbi, B. & Arabi, A., 2018. "Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification," Renewable Energy, Elsevier, vol. 127(C), pages 548-558.
    9. Tabar, Vahid Sohrabi & Jirdehi, Mehdi Ahmadi & Hemmati, Reza, 2017. "Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option," Energy, Elsevier, vol. 118(C), pages 827-839.
    10. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    11. Bode, Gerrit & Thul, Simon & Baranski, Marc & Müller, Dirk, 2020. "Real-world application of machine-learning-based fault detection trained with experimental data," Energy, Elsevier, vol. 198(C).
    12. Wang, Huaizhi & Ruan, Jiaqi & Ma, Zhengwei & Zhou, Bin & Fu, Xueqian & Cao, Guangzhong, 2019. "Deep learning aided interval state prediction for improving cyber security in energy internet," Energy, Elsevier, vol. 174(C), pages 1292-1304.
    13. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    14. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    15. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    16. Razavi, Rouzbeh & Gharipour, Amin & Fleury, Martin & Akpan, Ikpe Justice, 2019. "A practical feature-engineering framework for electricity theft detection in smart grids," Applied Energy, Elsevier, vol. 238(C), pages 481-494.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beyza, Jesus & Yusta, Jose M., 2021. "The effects of the high penetration of renewable energies on the reliability and vulnerability of interconnected electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Amitkumar V. Jha & Bhargav Appasani & Deepak Kumar Gupta & Taha Selim Ustun, 2022. "Analytical Design of Synchrophasor Communication Networks with Resiliency Analysis Framework for Smart Grid," Sustainability, MDPI, vol. 14(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yunfeng & Xue, Wenli & Wu, Ting & Wang, Huaizhi & Zhou, Bin & Aziz, Saddam & He, Yang, 2021. "Intrusion detection of cyber physical energy system based on multivariate ensemble classification," Energy, Elsevier, vol. 218(C).
    2. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
    3. Mehmet Efe Biresselioglu & Muhittin Hakan Demir & Sebnem Altinci, 2022. "Understanding the Citizen’s Role in the Transition to a Smart Energy System: Are We Ready?," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    4. Matthew Boeding & Kelly Boswell & Michael Hempel & Hamid Sharif & Juan Lopez & Kalyan Perumalla, 2022. "Survey of Cybersecurity Governance, Threats, and Countermeasures for the Power Grid," Energies, MDPI, vol. 15(22), pages 1-22, November.
    5. Hosseinnia, Hamed & Modarresi, Javad & Nazarpour, Daryoush, 2020. "Optimal eco-emission scheduling of distribution network operator and distributed generator owner under employing demand response program," Energy, Elsevier, vol. 191(C).
    6. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).
    7. Arman Goudarzi & Farzad Ghayoor & Muhammad Waseem & Shah Fahad & Issa Traore, 2022. "A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook," Energies, MDPI, vol. 15(19), pages 1-32, September.
    8. Francesco Causone & Rossano Scoccia & Martina Pelle & Paola Colombo & Mario Motta & Sibilla Ferroni, 2021. "Neighborhood Energy Modeling and Monitoring: A Case Study," Energies, MDPI, vol. 14(12), pages 1-19, June.
    9. Norouzi, F. & Hoppe, T. & Kamp, L.M. & Manktelow, C. & Bauer, P., 2023. "Diagnosis of the implementation of smart grid innovation in The Netherlands and corrective actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    10. Artur Felipe da Silva Veloso & José Valdemir Reis Júnior & Ricardo de Andrade Lira Rabelo & Jocines Dela-flora Silveira, 2021. "HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service," Future Internet, MDPI, vol. 13(11), pages 1-45, October.
    11. Mehdi Ahmadi Jirdehi & Mohammad Shaterabadi, 2021. "A low‐carbon strategy using INVELOX turbines in the presence of real‐time energy price uncertainty," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 461-482, June.
    12. Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D., 2020. "Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    13. Hussain, Muhammed & Dhimish, Mahmoud & Titarenko, Sofya & Mather, Peter, 2020. "Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters," Renewable Energy, Elsevier, vol. 155(C), pages 1272-1292.
    14. Hyung-Joon Kim & Mun-Kyeom Kim, 2019. "Multi-Objective Based Optimal Energy Management of Grid-Connected Microgrid Considering Advanced Demand Response," Energies, MDPI, vol. 12(21), pages 1-28, October.
    15. Zhu, Junjie & Huang, Shengjun & Liu, Yajie & Lei, Hongtao & Sang, Bo, 2021. "Optimal energy management for grid-connected microgrids via expected-scenario-oriented robust optimization," Energy, Elsevier, vol. 216(C).
    16. Tabar, Vahid Sohrabi & Abbasi, Vahid, 2019. "Energy management in microgrid with considering high penetration of renewable resources and surplus power generation problem," Energy, Elsevier, vol. 189(C).
    17. Blumberga, Andra & Vanaga, Ruta & Freimanis, Ritvars & Blumberga, Dagnija & Antužs, Juris & Krastiņš, Artūrs & Jankovskis, Ivars & Bondars, Edgars & Treija, Sandra, 2020. "Transition from traditional historic urban block to positive energy block," Energy, Elsevier, vol. 202(C).
    18. Lilia Tightiz & Hyosik Yang, 2020. "A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication," Energies, MDPI, vol. 13(11), pages 1-24, June.
    19. Sharma, Pavitra & Dutt Mathur, Hitesh & Mishra, Puneet & Bansal, Ramesh C., 2022. "A critical and comparative review of energy management strategies for microgrids," Applied Energy, Elsevier, vol. 327(C).
    20. Tabar, Vahid Sohrabi & Banazadeh, Hamidreza & Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Nasir, Mohammad & Jurado, Francisco, 2022. "Stochastic multi-stage multi-objective expansion of renewable resources and electrical energy storage units in distribution systems considering crypto-currency miners and responsive loads," Renewable Energy, Elsevier, vol. 198(C), pages 1131-1147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544221000256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.