IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics096014812400987x.html
   My bibliography  Save this article

Collaborative monitoring of wind turbine performance based on probabilistic power curve comparison

Author

Listed:
  • Li, Yanting
  • Wang, Peng
  • Wu, Zhenyu
  • Su, Yan

Abstract

A wind farm is usually equipped with multiple wind turbines of the same type. These wind turbines often work under same complex conditions. Accurate performance degradation monitoring is crucial for ensuring the reliable operation of wind farms and reducing maintenance costs. Motivated by this, this article develops a new wind turbine performance degradation monitoring scheme, which is based on pairwise comparison of the probability power curves of different wind turbines in a wind farm. Firstly, covariate matching is used to eliminate the inherent differences in meteorological variables of different turbines within the same data segment. Next, two probabilistic wind power curves, the quantile power curve and density power curve, model the functional relationship between the meteorological variables and wind power output. Then, deviation vectors are generated by calculating the deviation of probabilistic power curves between each pair of wind turbines. Finally, a directional Hotelling T2 control chart is proposed to monitor the deviation vectors. We apply the new method on the real data of a wind farm in East Britain. Results show that the proposed monitoring technique can monitor wind turbine performance degradation more precisely and comprehensively than the existing approaches.

Suggested Citation

  • Li, Yanting & Wang, Peng & Wu, Zhenyu & Su, Yan, 2024. "Collaborative monitoring of wind turbine performance based on probabilistic power curve comparison," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s096014812400987x
    DOI: 10.1016/j.renene.2024.120919
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400987X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s096014812400987x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.