IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3396-d263662.html
   My bibliography  Save this article

Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data

Author

Listed:
  • Mingzhu Tang

    (School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China 2 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China 3 College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA 4 Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance & Economics, Guiyang, Guizhou 550004, China 5 School of Engineering, University of South Australia, Adelaide, SA 5095, Australia)

  • Wei Chen
  • Qi Zhao

    (School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China 2 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China 3 College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA 4 Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance & Economics, Guiyang, Guizhou 550004, China 5 School of Engineering, University of South Australia, Adelaide, SA 5095, Australia)

  • Huawei Wu
  • Wen Long
  • Bin Huang

    (School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China 2 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China 3 College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA 4 Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance & Economics, Guiyang, Guizhou 550004, China 5 School of Engineering, University of South Australia, Adelaide, SA 5095, Australia)

  • Lida Liao

    (School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China 2 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China 3 College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA 4 Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance & Economics, Guiyang, Guizhou 550004, China 5 School of Engineering, University of South Australia, Adelaide, SA 5095, Australia)

  • Kang Zhang

    (School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China 2 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China 3 College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA 4 Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance & Economics, Guiyang, Guizhou 550004, China 5 School of Engineering, University of South Australia, Adelaide, SA 5095, Australia)

Abstract

Fault diagnosis and forecasting contribute significantly to the reduction of operating and maintenance associated costs, as well as to improve the resilience of wind turbine systems. Different from the existing fault diagnosis approaches using monitored vibration and acoustic data from the auxiliary equipment, this research presents a novel fault diagnosis and forecasting approach underpinned by a support vector regression model using data obtained by the supervisory control and data acquisition system (SCADA) of wind turbines (WT). To operate, the extraction of fault diagnosis features is conducted by measuring SCADA parameters. After that, confidence intervals are set up to guide the fault diagnosis implemented by the support vector regression (SVR) model. With the employment of confidence intervals as the performance indicators, an SVR-based fault detecting approach is then developed. Based on the WT SCADA data and the SVR model, a fault diagnosis strategy for large-scale doubly-fed wind turbine systems is investigated. A case study including a one-year monitoring SCADA data collected from a wind farm in Southern China is employed to validate the proposed methodology and demonstrate how it works. Results indicate that the proposed strategy can support the troubleshooting of wind turbine systems with high precision and effective response.

Suggested Citation

  • Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3396-:d:263662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Jinglong & Pan, Jun & Li, Zipeng & Zi, Yanyang & Chen, Xuefeng, 2016. "Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals," Renewable Energy, Elsevier, vol. 89(C), pages 80-92.
    2. Zhang, Yu & Lu, Wenxiu & Chu, Fulei, 2017. "Planet gear fault localization for wind turbine gearbox using acoustic emission signals," Renewable Energy, Elsevier, vol. 109(C), pages 449-460.
    3. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    4. Zhao, Hongshan & Liu, Huihai & Hu, Wenjing & Yan, Xihui, 2018. "Anomaly detection and fault analysis of wind turbine components based on deep learning network," Renewable Energy, Elsevier, vol. 127(C), pages 825-834.
    5. Alejandro Blanco-M. & Pere Marti-Puig & Karina Gibert & Jordi Cusidó & Jordi Solé-Casals, 2019. "A Text-Mining Approach to Assess the Failure Condition of Wind Turbines Using Maintenance Service History," Energies, MDPI, vol. 12(10), pages 1-20, May.
    6. Shamshirband, Shahaboddin & Petković, Dalibor & Amini, Amineh & Anuar, Nor Badrul & Nikolić, Vlastimir & Ćojbašić, Žarko & Mat Kiah, Miss Laiha & Gani, Abdullah, 2014. "Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission," Energy, Elsevier, vol. 67(C), pages 623-630.
    7. de Bessa, Iury Valente & Palhares, Reinaldo Martinez & D'Angelo, Marcos Flávio Silveira Vasconcelos & Chaves Filho, João Edgar, 2016. "Data-driven fault detection and isolation scheme for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 87(P1), pages 634-645.
    8. Odofin, Sarah & Bentley, Edward & Aikhuele, Daniel, 2018. "Robust fault estimation for wind turbine energy via hybrid systems," Renewable Energy, Elsevier, vol. 120(C), pages 289-299.
    9. Castellani, Francesco & Astolfi, Davide & Sdringola, Paolo & Proietti, Stefania & Terzi, Ludovico, 2017. "Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment," Applied Energy, Elsevier, vol. 185(P2), pages 1076-1086.
    10. Alejandro Blanco-M. & Karina Gibert & Pere Marti-Puig & Jordi Cusidó & Jordi Solé-Casals, 2018. "Identifying Health Status of Wind Turbines by Using Self Organizing Maps and Interpretation-Oriented Post-Processing Tools," Energies, MDPI, vol. 11(4), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    2. Can Ding & Yiyuan Zhou & Qingchang Ding & Kaiming Li, 2022. "Integrated Carbon-Capture-Based Low-Carbon Economic Dispatch of Power Systems Based on EEMD-LSTM-SVR Wind Power Forecasting," Energies, MDPI, vol. 15(5), pages 1-27, February.
    3. Mingzhu Tang & Qi Zhao & Steven X. Ding & Huawei Wu & Linlin Li & Wen Long & Bin Huang, 2020. "An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes," Energies, MDPI, vol. 13(4), pages 1-16, February.
    4. Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    2. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    3. Paweł Knes & Phong B. Dao, 2024. "Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach," Energies, MDPI, vol. 17(20), pages 1-21, October.
    4. Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
    5. Menon, Muraleekrishnan & Ponta, Fernando L., 2017. "Dynamic aeroelastic behavior of wind turbine rotors in rapid pitch-control actions," Renewable Energy, Elsevier, vol. 107(C), pages 327-339.
    6. Liang, Jinping & Zhang, Ke & Al-Durra, Ahmed & Zhou, Daming, 2020. "A novel fault diagnostic method in power converters for wind power generation system," Applied Energy, Elsevier, vol. 266(C).
    7. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    8. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    9. Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.
    10. Miao He & David He & Jae Yoon & Thomas J Nostrand & Junda Zhu & Eric Bechhoefer, 2019. "Wind turbine planetary gearbox feature extraction and fault diagnosis using a deep-learning-based approach," Journal of Risk and Reliability, , vol. 233(3), pages 303-316, June.
    11. Kong, Yun & Qin, Zhaoye & Wang, Tianyang & Han, Qinkai & Chu, Fulei, 2021. "An enhanced sparse representation-based intelligent recognition method for planet bearing fault diagnosis in wind turbines," Renewable Energy, Elsevier, vol. 173(C), pages 987-1004.
    12. Konstantina Fotiadou & Terpsichori Helen Velivassaki & Artemis Voulkidis & Dimitrios Skias & Corrado De Santis & Theodore Zahariadis, 2020. "Proactive Critical Energy Infrastructure Protection via Deep Feature Learning," Energies, MDPI, vol. 13(10), pages 1-19, May.
    13. Teng, Wei & Ding, Xian & Cheng, Hao & Han, Chen & Liu, Yibing & Mu, Haihua, 2019. "Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform," Renewable Energy, Elsevier, vol. 136(C), pages 393-402.
    14. Qu, Fuming & Liu, Jinhai & Zhu, Hongfei & Zhou, Bowen, 2020. "Wind turbine fault detection based on expanded linguistic terms and rules using non-singleton fuzzy logic," Applied Energy, Elsevier, vol. 262(C).
    15. Sequeira, C. & Pacheco, A. & Galego, P. & Gorbeña, E., 2019. "Analysis of the efficiency of wind turbine gearboxes using the temperature variable," Renewable Energy, Elsevier, vol. 135(C), pages 465-472.
    16. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    17. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    18. Miao, Yonghao & Zhao, Ming & Liang, Kaixuan & Lin, Jing, 2020. "Application of an improved MCKDA for fault detection of wind turbine gear based on encoder signal," Renewable Energy, Elsevier, vol. 151(C), pages 192-203.
    19. Shulin Li & Fuqiang Tian & Haitao He & Hongqi Liu & Shifu Zhang & Yudi Li, 2024. "Investigation on Overvoltage Distribution in Stator Windings of Permanent Magnet Synchronous Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-15, August.
    20. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3396-:d:263662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.