IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2277-d775873.html
   My bibliography  Save this article

Online Estimation of the Mechanical Parameters of a Wind Turbine with Doubly Fed Induction Generator by Utilizing Turbulence Excitations

Author

Listed:
  • Yening Lai

    (NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211100, China)

  • Ling Zhu

    (NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211100, China)

  • Xueping Pan

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Jinpeng Guo

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Dazhuang He

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Wei Liang

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

Abstract

In this paper, a new method using wind turbulence excitation is proposed to estimate the parameters of the mechanical system (drivetrain and pitch angle controller) in a Doubly Fed Induction Generator (DFIG) Wind Turbine (WT). Firstly, simulations were carried out for a DFIG WT under turbulence excitations. The spectral contents of the responses imply that the transients of the electrical system (generator and converter), which are much faster than those of the mechanical system, can be neglected when estimating the mechanical parameters. Based on this, a simplified model related to the mechanical system of the DFIG WT was derived by applying the model reduction technique. Secondly, the parameter sensitivity of Power Spectral Density (PSD) was used to quantify the impacts of individual parameters on the dynamics of the mechanical system, and the influential parameters were selected on the basis of the sensitivity results. Finally, a weighted least-squares optimization problem, which is suitable for a system with close oscillation modes, was formulated for parameter estimation. The estimation results based on two different types of optimization methods were compared, and their estimation accuracies validate the effectiveness of the proposed method.

Suggested Citation

  • Yening Lai & Ling Zhu & Xueping Pan & Jinpeng Guo & Dazhuang He & Wei Liang, 2022. "Online Estimation of the Mechanical Parameters of a Wind Turbine with Doubly Fed Induction Generator by Utilizing Turbulence Excitations," Energies, MDPI, vol. 15(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2277-:d:775873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Hongshan & Liu, Huihai & Hu, Wenjing & Yan, Xihui, 2018. "Anomaly detection and fault analysis of wind turbine components based on deep learning network," Renewable Energy, Elsevier, vol. 127(C), pages 825-834.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    2. Jia Tian & Xingqin Zhang & Shuangqing Zheng & Zhiyong Liu & Changshu Zhan, 2024. "Synergising an Advanced Optimisation Technique with Deep Learning: A Novel Method in Fault Warning Systems," Mathematics, MDPI, vol. 12(9), pages 1-25, April.
    3. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
    4. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
    5. Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
    6. Zhang, Chen & Yang, Tao, 2021. "Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ," Renewable Energy, Elsevier, vol. 164(C), pages 1540-1549.
    7. Adaiton Oliveira-Filho & Ryad Zemouri & Philippe Cambron & Antoine Tahan, 2023. "Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model," Energies, MDPI, vol. 16(12), pages 1-21, June.
    8. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
    9. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    10. Meng Li & Shuangxin Wang, 2019. "Dynamic Fault Monitoring of Pitch System in Wind Turbines using Selective Ensemble Small-World Neural Networks," Energies, MDPI, vol. 12(17), pages 1-20, August.
    11. Jastrzebska, Agnieszka & Morales Hernández, Alejandro & Nápoles, Gonzalo & Salgueiro, Yamisleydi & Vanhoof, Koen, 2022. "Measuring wind turbine health using fuzzy-concept-based drifting models," Renewable Energy, Elsevier, vol. 190(C), pages 730-740.
    12. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    13. Matthew Boeding & Kelly Boswell & Michael Hempel & Hamid Sharif & Juan Lopez & Kalyan Perumalla, 2022. "Survey of Cybersecurity Governance, Threats, and Countermeasures for the Power Grid," Energies, MDPI, vol. 15(22), pages 1-22, November.
    14. Paweł Knes & Phong B. Dao, 2024. "Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach," Energies, MDPI, vol. 17(20), pages 1-21, October.
    15. Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
    16. Marc-Alexander Lutz & Stephan Vogt & Volker Berkhout & Stefan Faulstich & Steffen Dienst & Urs Steinmetz & Christian Gück & Andres Ortega, 2020. "Evaluation of Anomaly Detection of an Autoencoder Based on Maintenace Information and Scada-Data," Energies, MDPI, vol. 13(5), pages 1-18, February.
    17. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
    18. Choe, Do-Eun & Kim, Hyoung-Chul & Kim, Moo-Hyun, 2021. "Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades," Renewable Energy, Elsevier, vol. 174(C), pages 218-235.
    19. Rogerio Adriano da Fonseca Santiago & Natasha Benjamim Barbosa & Henrique Gomes Mergulhão & Tassio Farias de Carvalho & Alex Alisson Bandeira Santos & Ricardo Cerqueira Medrado & Jose Bione de Melo Fi, 2024. "Data-Driven Models Applied to Predictive and Prescriptive Maintenance of Wind Turbine: A Systematic Review of Approaches Based on Failure Detection, Diagnosis, and Prognosis," Energies, MDPI, vol. 17(5), pages 1-24, February.
    20. Conor McKinnon & James Carroll & Alasdair McDonald & Sofia Koukoura & David Infield & Conaill Soraghan, 2020. "Comparison of New Anomaly Detection Technique for Wind Turbine Condition Monitoring Using Gearbox SCADA Data," Energies, MDPI, vol. 13(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2277-:d:775873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.