IDEAS home Printed from https://ideas.repec.org/r/eee/reensy/v165y2017icp155-169.html
   My bibliography  Save this item

Towards the assessment of potential impact of unmanned vessels on maritime transportation safety

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
  2. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
  3. Victor Bolbot & Gerasimos Theotokatos & LA Wennersberg & Jerome Faivre & Dracos Vassalos & Evangelos Boulougouris & Ørnulf Jan Rødseth & Pål Andersen & Ann-Sofie Pauwelyn & Antoon Van Coillie, 2023. "A novel risk assessment process: Application to an autonomous inland waterways ship," Journal of Risk and Reliability, , vol. 237(2), pages 436-458, April.
  4. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
  5. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
  6. Gam Thi Hong Nguyen & Daria Ruzaeva & Julio Cesar Góez & Mario Guajardo, 2022. "Insights on the introduction of autonomous vessels to liner shipping networks," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-27, December.
  7. Wenjun Zhang & Yingjun Zhang & Weiliang Qiao, 2022. "Risk Scenario Evaluation for Intelligent Ships by Mapping Hierarchical Holographic Modeling into Risk Filtering, Ranking and Management," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
  8. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
  9. Hasan Mahbub Tusher & Ziaul Haque Munim & Theo E. Notteboom & Tae-Eun Kim & Salman Nazir, 2022. "Cyber security risk assessment in autonomous shipping," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 208-227, June.
  10. Zhang, Jinfeng & Jin, Mei & Wan, Chengpeng & Dong, Zhijie & Wu, Xiaohong, 2024. "A Bayesian network-based model for risk modeling and scenario deduction of collision accidents of inland intelligent ships," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  11. Fang Wang & Weijie Du & Hongxiang Feng & Yun Ye & Manel Grifoll & Guiyun Liu & Pengjun Zheng, 2023. "Identification of Risk Influential Factors for Fishing Vessel Accidents Using Claims Data from Fishery Mutual Insurance Association," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
  12. Wróbel, Krzysztof, 2021. "Searching for the origins of the myth: 80% human error impact on maritime safety," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  13. Ismail Kurt & Murat Aymelek, 2022. "Operational and economic advantages of autonomous ships and their perceived impacts on port operations," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 302-326, June.
  14. Utne, Ingrid Bouwer & Rokseth, Børge & Sørensen, Asgeir J. & Vinnem, Jan Erik, 2020. "Towards supervisory risk control of autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
  15. de Vos, Jiri & Hekkenberg, Robert G. & Valdez Banda, Osiris A., 2021. "The Impact of Autonomous Ships on Safety at Sea – A Statistical Analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
  16. Bye, Rolf J. & Aalberg, Asbjørn L., 2018. "Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 174-186.
  17. Nikolaos P Ventikos & Konstantinos Louzis, 2023. "Developing next generation marine risk analysis for ships: Bio-inspiration for building immunity," Journal of Risk and Reliability, , vol. 237(2), pages 405-424, April.
  18. Ramos, M.A. & Thieme, Christoph A. & Utne, Ingrid B. & Mosleh, A., 2020. "Human-system concurrent task analysis for maritime autonomous surface ship operation and safety," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  19. Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad & Banda, Osiris Valdez & van Gelder, Pieter, 2022. "A probabilistic model to evaluate the resilience of unattended machinery plants in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
  20. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  21. Chen, Xi & Bose, Neil & Brito, Mario & Khan, Faisal & Thanyamanta, Bo & Zou, Ting, 2021. "A Review of Risk Analysis Research for the Operations of Autonomous Underwater Vehicles," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  22. Wang, Huanxin & Liu, Zhengjiang & Wang, Xinjian & Graham, Tony & Wang, Jin, 2021. "An analysis of factors affecting the severity of marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
  23. Eriksen, Stig & Utne, Ingrid Bouwer & Lützen, Marie, 2021. "An RCM approach for assessing reliability challenges and maintenance needs of unmanned cargo ships," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
  24. Krzysztof Bogusławski & Mateusz Gil & Jan Nasur & Krzysztof Wróbel, 2022. "Implications of autonomous shipping for maritime education and training: the cadet’s perspective," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 327-343, June.
  25. Johansen, Thomas & Blindheim, Simon & Torben, Tobias Rye & Utne, Ingrid Bouwer & Johansen, Tor Arne & Sørensen, Asgeir J., 2023. "Development and testing of a risk-based control system for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  26. Konstantinos Poulis & Gregorios C. Galanakis & Gregory T. Triantafillou & Efthimios Poulis, 2020. "Value migration: digitalization of shipping as a mechanism of industry dethronement," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-18, December.
  27. Wang, Yang & Chen, Peng & Wu, Bing & Wan, Chengpeng & Yang, Zaili, 2022. "A trustable architecture over blockchain to facilitate maritime administration for MASS systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
  28. Xiaoyuan Zhao & Haiwen Yuan & Qing Yu, 2021. "Autonomous Vessels in the Yangtze River: A Study on the Maritime Accidents Using Data-Driven Bayesian Networks," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
  29. Fan, Cunlong & Montewka, Jakub & Bolbot, Victor & Zhang, Yang & Qiu, Yuhui & Hu, Shenping, 2024. "Towards an analysis framework for operational risk coupling mode: A case from MASS navigating in restricted waters," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  30. Valdez Banda, Osiris A. & Kannos, Sirpa & Goerlandt, Floris & van Gelder, Pieter H.A.J.M. & Bergström, Martin & Kujala, Pentti, 2019. "A systemic hazard analysis and management process for the concept design phase of an autonomous vessel," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
  31. Wenjun Zhang & Xiangkun Meng & Xue Yang & Hongguang Lyu & Xiang-Yu Zhou & Qingwu Wang, 2022. "A Practical Risk-Based Model for Early Warning of Seafarer Errors Using Integrated Bayesian Network and SPAR-H," IJERPH, MDPI, vol. 19(16), pages 1-14, August.
  32. Yang, Xue & Ramezani, Ramin & Utne, Ingrid Bouwer & Mosleh, Ali & Lader, PÃ¥l Furset, 2020. "Operational limits for aquaculture operations from a risk and safety perspective," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
  33. Cunlong Fan & Jakub Montewka & Di Zhang, 2021. "Towards a Framework of Operational-Risk Assessment for a Maritime Autonomous Surface Ship," Energies, MDPI, vol. 14(13), pages 1-12, June.
  34. Li, Zhongping & Cui, Lirong & Chen, Jianhui, 2018. "Traffic accident modelling via self-exciting point processes," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 312-320.
  35. Gil, Mateusz, 2021. "A concept of critical safety area applicable for an obstacle-avoidance process for manned and autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  36. Gil, Mateusz & Kozioł, Paweł & Wróbel, Krzysztof & Montewka, Jakub, 2022. "Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
  37. Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.