A concept of critical safety area applicable for an obstacle-avoidance process for manned and autonomous ships
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2021.107806
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Du, Lei & Goerlandt, Floris & Kujala, Pentti, 2020. "Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
- Dreany, Harry H. & Roncace, Robert, 2019. "A cognitive architecture safety design for safety critical systems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Ramos, M.A. & Thieme, Christoph A. & Utne, Ingrid B. & Mosleh, A., 2020. "Human-system concurrent task analysis for maritime autonomous surface ship operation and safety," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
- Montewka, Jakub & Hinz, Tomasz & Kujala, Pentti & Matusiak, Jerzy, 2010. "Probability modelling of vessel collisions," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 573-589.
- Utne, Ingrid Bouwer & Rokseth, Børge & Sørensen, Asgeir J. & Vinnem, Jan Erik, 2020. "Towards supervisory risk control of autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
- Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2017. "Towards the assessment of potential impact of unmanned vessels on maritime transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 155-169.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ruponen, Pekka & Montewka, Jakub & Tompuri, Markus & Manderbacka, Teemu & Hirdaris, Spyros, 2022. "A framework for onboard assessment and monitoring of flooding risk due to open watertight doors for passenger ships," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2024. "A framework for ship abnormal behaviour detection and classification using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- Zhang, Mingyang & Kujala, Pentti & Hirdaris, Spyros, 2022. "A machine learning method for the evaluation of ship grounding risk in real operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Liu, Jiongjiong & Zhang, Jinfen & Yang, Zaili & Wan, Chengpeng & Zhang, Mingyang, 2024. "A novel data-driven method of ship collision risk evolution evaluation during real encounter situations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
- Pauer, Gábor & Török, à rpád, 2022. "Introducing a novel safety assessment method through the example of a reduced complexity binary integer autonomous transport model," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Zyczkowski, Marcin & Szlapczynski, Rafal, 2023. "Collision risk-informed weather routing for sailboats," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Montewka, Jakub & Manderbacka, Teemu & Ruponen, Pekka & Tompuri, Markus & Gil, Mateusz & Hirdaris, Spyros, 2022. "Accident susceptibility index for a passenger ship-a framework and case study," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Cheng, Tingting & Utne, Ingrid Bouwer & Wu, Bing & Wu, Qing, 2023. "A novel system-theoretic approach for human-system collaboration safety: Case studies on two degrees of autonomy for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Zvyagina, Tatiana & Zvyagin, Petr, 2022. "A model of multi-objective route optimization for a vessel in drifting ice," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad & Banda, Osiris Valdez & van Gelder, Pieter, 2022. "A probabilistic model to evaluate the resilience of unattended machinery plants in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Xiao, Jun & Qu, Yuqing & She, Buxin & Song, Chenhui, 2023. "Operational boundary of flow network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Johansen, Thomas & Blindheim, Simon & Torben, Tobias Rye & Utne, Ingrid Bouwer & Johansen, Tor Arne & Sørensen, Asgeir J., 2023. "Development and testing of a risk-based control system for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Mazurek, J. & Lu, L. & Krata, P. & Montewka, J. & Krata, H. & Kujala, P., 2022. "An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Gil, Mateusz & Kozioł, Paweł & Wróbel, Krzysztof & Montewka, Jakub, 2022. "Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Krzysztof Wróbel & Mateusz Gil & Yamin Huang & Ryszard Wawruch, 2022. "The Vagueness of COLREG versus Collision Avoidance Techniques—A Discussion on the Current State and Future Challenges Concerning the Operation of Autonomous Ships," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
- Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- de Vos, Jiri & Hekkenberg, Robert G. & Valdez Banda, Osiris A., 2021. "The Impact of Autonomous Ships on Safety at Sea – A Statistical Analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Wang, Yang & Chen, Peng & Wu, Bing & Wan, Chengpeng & Yang, Zaili, 2022. "A trustable architecture over blockchain to facilitate maritime administration for MASS systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Victor Bolbot & Gerasimos Theotokatos & LA Wennersberg & Jerome Faivre & Dracos Vassalos & Evangelos Boulougouris & Ørnulf Jan Rødseth & Pål Andersen & Ann-Sofie Pauwelyn & Antoon Van Coillie, 2023. "A novel risk assessment process: Application to an autonomous inland waterways ship," Journal of Risk and Reliability, , vol. 237(2), pages 436-458, April.
- BahooToroody, Ahmad & Abaei, Mohammad Mahdi & Banda, Osiris Valdez & Kujala, Pentti & De Carlo, Filippo & Abbassi, Rouzbeh, 2022. "Prognostic health management of repairable ship systems through different autonomy degree; From current condition to fully autonomous ship," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Zhang, Mingyang & Montewka, Jakub & Manderbacka, Teemu & Kujala, Pentti & Hirdaris, Spyros, 2021. "A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Johansen, Thomas & Blindheim, Simon & Torben, Tobias Rye & Utne, Ingrid Bouwer & Johansen, Tor Arne & Sørensen, Asgeir J., 2023. "Development and testing of a risk-based control system for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Chen, Xi & Bose, Neil & Brito, Mario & Khan, Faisal & Thanyamanta, Bo & Zou, Ting, 2021. "A Review of Risk Analysis Research for the Operations of Autonomous Underwater Vehicles," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad & Banda, Osiris Valdez & van Gelder, Pieter, 2022. "A probabilistic model to evaluate the resilience of unattended machinery plants in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Fonseca, Tiago & Lagdami, Khanssa & Schröder-Hinrichs, Jens-Uwe, 2021. "Assessing innovation in transport: An application of the Technology Adoption (TechAdo) model to Maritime Autonomous Surface Ships (MASS)," Transport Policy, Elsevier, vol. 114(C), pages 182-195.
- Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad, 2021. "A multinomial process tree for reliability assessment of machinery in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Mazurek, J. & Lu, L. & Krata, P. & Montewka, J. & Krata, H. & Kujala, P., 2022. "An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Fan, Cunlong & Montewka, Jakub & Bolbot, Victor & Zhang, Yang & Qiu, Yuhui & Hu, Shenping, 2024. "Towards an analysis framework for operational risk coupling mode: A case from MASS navigating in restricted waters," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Szlapczynski, Rafal & Szlapczynska, Joanna, 2021. "A ship domain-based model of collision risk for near-miss detection and Collision Alert Systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Cheng, Tingting & Utne, Ingrid Bouwer & Wu, Bing & Wu, Qing, 2023. "A novel system-theoretic approach for human-system collaboration safety: Case studies on two degrees of autonomy for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Ismail Kurt & Murat Aymelek, 2022. "Operational and economic advantages of autonomous ships and their perceived impacts on port operations," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 302-326, June.
More about this item
Keywords
Collision Avoidance Dynamic Critical Area (CADCA); evasive maneuver; maritime risk and safety; ship maneuvering area; allision; critical area;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:214:y:2021:i:c:s095183202100329x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.