IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13427-d1235226.html
   My bibliography  Save this article

Identification of Risk Influential Factors for Fishing Vessel Accidents Using Claims Data from Fishery Mutual Insurance Association

Author

Listed:
  • Fang Wang

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China
    Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    National Traffic Management Engineering & Technology Research Centre, Ningbo University Sub-Centre, Ningbo 315832, China)

  • Weijie Du

    (Ningbo Pilot Station, Ningbo 315040, China)

  • Hongxiang Feng

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China
    Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    National Traffic Management Engineering & Technology Research Centre, Ningbo University Sub-Centre, Ningbo 315832, China)

  • Yun Ye

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China
    Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    National Traffic Management Engineering & Technology Research Centre, Ningbo University Sub-Centre, Ningbo 315832, China)

  • Manel Grifoll

    (Barcelona School of Nautical Studies, Universitat Politècnica de Catalunya—BarcelonaTech, 08003 Barcelona, Spain)

  • Guiyun Liu

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China
    Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    National Traffic Management Engineering & Technology Research Centre, Ningbo University Sub-Centre, Ningbo 315832, China)

  • Pengjun Zheng

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China
    Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    National Traffic Management Engineering & Technology Research Centre, Ningbo University Sub-Centre, Ningbo 315832, China)

Abstract

This research aims to identify and analyze the significant risk factors contributing to accidents involving fishing vessels, a crucial step towards enhancing safety and promoting sustainable practices in the fishing industry. Using a data-driven Bayesian network (BN) model that incorporates feature selection through the random forest (RF) method, we explore these key factors and their interconnected relationships. A review of past academic studies and accident investigation reports from the Fishery Mutual Insurance Association (FMIA) revealed 17 such factors. We then used the random forest model to rank these factors by importance, selecting 11 critical ones to build the Bayesian network model. The data-driven Bayesian network (BN) model is further utilized to delve deeper into the central factors influencing fishing vessel accidents. Upon validation, the study results show that incorporating the random forest feature selection method enhances the simplicity, reliability, and precision of the BN model. This finding is supported by a thorough performance evaluation and scenario analysis.

Suggested Citation

  • Fang Wang & Weijie Du & Hongxiang Feng & Yun Ye & Manel Grifoll & Guiyun Liu & Pengjun Zheng, 2023. "Identification of Risk Influential Factors for Fishing Vessel Accidents Using Claims Data from Fishery Mutual Insurance Association," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13427-:d:1235226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13427/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shiqi Fan & Zaili Yang & Eduardo Blanco-Davis & Jinfen Zhang & Xinping Yan, 2020. "Analysis of maritime transport accidents using Bayesian networks," Journal of Risk and Reliability, , vol. 234(3), pages 439-454, June.
    2. Çakır, Erkan & Fışkın, Remzi & Sevgili, Coşkan, 2021. "Investigation of tugboat accidents severity: An application of association rule mining algorithms," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.
    4. Yang, Zaili & Yang, Zhisen & Smith, John & Robert, Bostock Adam Peter, 2021. "Risk analysis of bicycle accidents: A Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    6. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2017. "Towards the assessment of potential impact of unmanned vessels on maritime transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 155-169.
    7. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    8. Jinfen Zhang & Ângelo P Teixeira & C. Guedes Soares & Xinping Yan & Kezhong Liu, 2016. "Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1171-1187, June.
    9. Wayne Talley, 1999. "The safety of sea transport: determinants of crew injuries," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1365-1372.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyungju Kim & Kwiyeon Koo & Hyunjeong Lim & Sooyeon Kwon & Yoowon Lee, 2024. "Analysis of Fishing Vessel Accidents and Suggestions for Safety Policy in South Korea from 2018 to 2022," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
    2. Hongxia Zhou & Fang Wang & Weili Hu & Manel Grifoll & Jiao Liu & Weijie Du & Pengjun Zheng, 2024. "A Novel Framework for Identifying Major Fishing Vessel Accidents and Their Key Influencing Factors," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    3. Seung-Hyun Lee & Su-Hyung Kim & Kyung-Jin Ryu & Yoo-Won Lee, 2024. "Bayesian Network Analysis of Industrial Accident Risk for Fishers on Fishing Vessels Less Than 12 m in Length," Sustainability, MDPI, vol. 16(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jinfeng & Jin, Mei & Wan, Chengpeng & Dong, Zhijie & Wu, Xiaohong, 2024. "A Bayesian network-based model for risk modeling and scenario deduction of collision accidents of inland intelligent ships," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Xiaoyuan Zhao & Haiwen Yuan & Qing Yu, 2021. "Autonomous Vessels in the Yangtze River: A Study on the Maritime Accidents Using Data-Driven Bayesian Networks," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    5. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    6. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    8. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    9. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    10. Bourdouxhe, Axel & Wibail, Lionel & Claessens, Hugues & Dufrêne, Marc, 2023. "Modeling potential natural vegetation: A new light on an old concept to guide nature conservation in fragmented and degraded landscapes," Ecological Modelling, Elsevier, vol. 481(C).
    11. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    12. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    13. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    14. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    15. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    16. Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    17. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    18. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    19. Hunish Bansal & Basavraj Chinagundi & Prashant Singh Rana & Neeraj Kumar, 2022. "An Ensemble Machine Learning Technique for Detection of Abnormalities in Knee Movement Sustainability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    20. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13427-:d:1235226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.