IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v207y2021ics0951832020308176.html
   My bibliography  Save this article

Risk assessment of the operations of maritime autonomous surface ships

Author

Listed:
  • Chang, Chia-Hsun
  • Kontovas, Christos
  • Yu, Qing
  • Yang, Zaili

Abstract

Maritime Autonomous Surface Ships (MASS) are attracting increasing attention in the maritime industry. Despite the expected benefits in reducing human error and significantly increasing the overall safety level, the development of autonomous ships would undoubtedly introduce new risks. The overall goal of this work is to develop an approach to evaluate the risk level of major hazards associated with MASS. To that extent, a Failure Modes and Effects Analysis (FMEA) method is used in conjunction with Evidential Reasoning (ER) and Rule-based Bayesian Network (RBN) to quantify the risk levels of the identified hazards. The results show that ‘interaction with manned vessels and detection of objects’ contributes the most to the overall risk of MASS operations, followed by ‘cyber-attacks’, ‘human error’ and ‘equipment failure’. The findings provide useful insights on the major hazards and can aid the overall safety assurance of MASS.

Suggested Citation

  • Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020308176
    DOI: 10.1016/j.ress.2020.107324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020308176
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Z. L. Yang & J. Wang & K. X. Li, 2013. "Maritime safety analysis in retrospect," Maritime Policy & Management, Taylor & Francis Journals, vol. 40(3), pages 261-277, May.
    3. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    4. Ramos, M.A. & Thieme, Christoph A. & Utne, Ingrid B. & Mosleh, A., 2020. "Human-system concurrent task analysis for maritime autonomous surface ship operation and safety," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    5. Jones, B. & Jenkinson, I. & Yang, Z. & Wang, J., 2010. "The use of Bayesian network modelling for maintenance planning in a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 267-277.
    6. Pristrom, Sascha & Yang, Zaili & Wang, Jin & Yan, Xinping, 2016. "A novel flexible model for piracy and robbery assessment of merchant ship operations," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 196-211.
    7. Kimberly Tam & Kevin D. Jones, 2018. "Maritime cybersecurity policy: the scope and impact of evolving technology on international shipping," Journal of Cyber Policy, Taylor & Francis Journals, vol. 3(2), pages 147-164, May.
    8. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
    9. Heij, C. & Knapp, S., 2018. "Predictive power of inspection outcomes for future shipping accidents," Econometric Institute Research Papers EI2018-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Z. L. Yang & J. Wang & S. Bonsall & Q. G. Fang, 2009. "Use of Fuzzy Evidential Reasoning in Maritime Security Assessment," Risk Analysis, John Wiley & Sons, vol. 29(1), pages 95-120, January.
    11. Hani Alyami & Paul Tae-Woo Lee & Zaili Yang & Ramin Riahi & Stephen Bonsall & Jin Wang, 2014. "An advanced risk analysis approach for container port safety evaluation," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(7), pages 634-650, December.
    12. Christiaan Heij & Sabine Knapp, 2018. "Predictive power of inspection outcomes for future shipping accidents – an empirical appraisal with special attention for human factor aspects," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(5), pages 604-621, July.
    13. Utne, Ingrid Bouwer & Rokseth, Børge & Sørensen, Asgeir J. & Vinnem, Jan Erik, 2020. "Towards supervisory risk control of autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    14. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2017. "Towards the assessment of potential impact of unmanned vessels on maritime transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 155-169.
    15. Wan, Chengpeng & Yan, Xinping & Zhang, Di & Qu, Zhuohua & Yang, Zaili, 2019. "An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 222-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Jiang, Meizhi & Lu, Jing, 2020. "The analysis of maritime piracy occurred in Southeast Asia by using Bayesian network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
    3. Uflaz, Esma & Sezer, Sukru Ilke & Tunçel, Ahmet Lutfi & Aydin, Muhammet & Akyuz, Emre & Arslan, Ozcan, 2024. "Quantifying potential cyber-attack risks in maritime transportation under Dempster–Shafer theory FMECA and rule-based Bayesian network modelling," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    5. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.
    6. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad & Banda, Osiris Valdez & van Gelder, Pieter, 2022. "A probabilistic model to evaluate the resilience of unattended machinery plants in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Yu, Qing & Liu, Kezhong & Yang, Zhisen & Wang, Hongbo & Yang, Zaili, 2021. "Geometrical risk evaluation of the collisions between ships and offshore installations using rule-based Bayesian reasoning," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. de Vos, Jiri & Hekkenberg, Robert G. & Valdez Banda, Osiris A., 2021. "The Impact of Autonomous Ships on Safety at Sea – A Statistical Analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Wang, Yang & Chen, Peng & Wu, Bing & Wan, Chengpeng & Yang, Zaili, 2022. "A trustable architecture over blockchain to facilitate maritime administration for MASS systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    13. Gil, Mateusz, 2021. "A concept of critical safety area applicable for an obstacle-avoidance process for manned and autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    14. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    15. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    16. Wróbel, Krzysztof, 2021. "Searching for the origins of the myth: 80% human error impact on maritime safety," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Xiaoyuan Zhao & Haiwen Yuan & Qing Yu, 2021. "Autonomous Vessels in the Yangtze River: A Study on the Maritime Accidents Using Data-Driven Bayesian Networks," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    18. Bing Wu & Xinping Yan & Yang Wang & C. Guedes Soares, 2017. "An Evidential Reasoning‐Based CREAM to Human Reliability Analysis in Maritime Accident Process," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1936-1957, October.
    19. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    20. Victor Bolbot & Gerasimos Theotokatos & LA Wennersberg & Jerome Faivre & Dracos Vassalos & Evangelos Boulougouris & Ørnulf Jan Rødseth & Pål Andersen & Ann-Sofie Pauwelyn & Antoon Van Coillie, 2023. "A novel risk assessment process: Application to an autonomous inland waterways ship," Journal of Risk and Reliability, , vol. 237(2), pages 436-458, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020308176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.