IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v191y2019ics0951832017314151.html
   My bibliography  Save this article

A systemic hazard analysis and management process for the concept design phase of an autonomous vessel

Author

Listed:
  • Valdez Banda, Osiris A.
  • Kannos, Sirpa
  • Goerlandt, Floris
  • van Gelder, Pieter H.A.J.M.
  • Bergström, Martin
  • Kujala, Pentti

Abstract

Autonomous vessels have become a topic of high interest for the maritime transport industry. Recent progress in the development of technologies enabling autonomous systems has fostered the idea that autonomous vessels will soon be a reality. However, before the first autonomous vessel can be released into her actual context of operation, it is necessary to ensure that it is safe. This is a major challenge as the experience of autonomous ships is very limited. This study highlights the need for elaborating a systemic and systematic hazard analysis since the earliest design phase of an autonomous vessel. In particular, it proposes a process for elaborating an initial hazard analysis and management that provides coherent, transparent and traceable safety input information for the design of an autonomous vessel. The process is applied to analyse the hazards of two autonomous vessel concepts for urban transport in the city of Turku, Finland.

Suggested Citation

  • Valdez Banda, Osiris A. & Kannos, Sirpa & Goerlandt, Floris & van Gelder, Pieter H.A.J.M. & Bergström, Martin & Kujala, Pentti, 2019. "A systemic hazard analysis and management process for the concept design phase of an autonomous vessel," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832017314151
    DOI: 10.1016/j.ress.2019.106584
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017314151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.
    2. Carl Macrae, 2009. "Human factors at sea: common patterns of error in groundings and collisions," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(1), pages 21-38, February.
    3. Giel Wiel & J. Dorp, 2011. "An oil outflow model for tanker collisions and groundings," Annals of Operations Research, Springer, vol. 187(1), pages 279-304, July.
    4. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2017. "Towards the assessment of potential impact of unmanned vessels on maritime transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 155-169.
    5. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    6. Kujala, P. & Hänninen, M. & Arola, T. & Ylitalo, J., 2009. "Analysis of the marine traffic safety in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1349-1357.
    7. Hänninen, Maria & Kujala, Pentti, 2012. "Influences of variables on ship collision probability in a Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 27-40.
    8. Vanem, Erik & Antão, Pedro & Østvik, Ivan & de Comas, Francisco Del Castillo, 2008. "Analysing the risk of LNG carrier operations," Reliability Engineering and System Safety, Elsevier, vol. 93(9), pages 1328-1344.
    9. Maria Hänninen & Arsham Mazaheri & Pentti Kujala & Jakub Montewka & Pekka Laaksonen & Maija Salmiovirta & Mikko Klang, 2014. "Expert elicitation of a navigation service implementation effects on ship groundings and collisions in the Gulf of Finland," Journal of Risk and Reliability, , vol. 228(1), pages 19-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad, 2021. "A multinomial process tree for reliability assessment of machinery in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Fonseca, Tiago & Lagdami, Khanssa & Schröder-Hinrichs, Jens-Uwe, 2021. "Assessing innovation in transport: An application of the Technology Adoption (TechAdo) model to Maritime Autonomous Surface Ships (MASS)," Transport Policy, Elsevier, vol. 114(C), pages 182-195.
    3. Pauer, Gábor & Török, à rpád, 2022. "Introducing a novel safety assessment method through the example of a reduced complexity binary integer autonomous transport model," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Li, Xue & Oh, Poong & Zhou, Yusheng & Yuen, Kum Fai, 2023. "Operational risk identification of maritime surface autonomous ship: A network analysis approach," Transport Policy, Elsevier, vol. 130(C), pages 1-14.
    5. Cheng, Tingting & Utne, Ingrid Bouwer & Wu, Bing & Wu, Qing, 2023. "A novel system-theoretic approach for human-system collaboration safety: Case studies on two degrees of autonomy for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Mahdieh Delikhoon & Esmaeil Zarei & Osiris Valdez Banda & Mohammad Faridan & Ehsanollah Habibi, 2022. "Systems Thinking Accident Analysis Models: A Systematic Review for Sustainable Safety Management," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    7. de Vos, Jiri & Hekkenberg, Robert G. & Valdez Banda, Osiris A., 2021. "The Impact of Autonomous Ships on Safety at Sea – A Statistical Analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    8. Du, Lei & Banda, Osiris A. Valdez & Huang, Yamin & Goerlandt, Floris & Kujala, Pentti & Zhang, Weibin, 2021. "An empirical ship domain based on evasive maneuver and perceived collision risk," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. BahooToroody, Ahmad & Abaei, Mohammad Mahdi & Banda, Osiris Valdez & Kujala, Pentti & De Carlo, Filippo & Abbassi, Rouzbeh, 2022. "Prognostic health management of repairable ship systems through different autonomy degree; From current condition to fully autonomous ship," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    10. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Johansen, Thomas & Blindheim, Simon & Torben, Tobias Rye & Utne, Ingrid Bouwer & Johansen, Tor Arne & Sørensen, Asgeir J., 2023. "Development and testing of a risk-based control system for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Zhang, Wenjun & Zhang, Yingjun & Zhang, Chuang, 2024. "Research on risk assessment of maritime autonomous surface ships based on catastrophe theory," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Mingyang & Montewka, Jakub & Manderbacka, Teemu & Kujala, Pentti & Hirdaris, Spyros, 2021. "A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Li, Zhongping & Cui, Lirong & Chen, Jianhui, 2018. "Traffic accident modelling via self-exciting point processes," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 312-320.
    3. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    5. Suyi Li & Qiang Meng & Xiaobo Qu, 2012. "An Overview of Maritime Waterway Quantitative Risk Assessment Models," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 496-512, March.
    6. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Silveira, P. & Teixeira, A.P. & Figueira, J.R. & Guedes Soares, C., 2021. "A multicriteria outranking approach for ship collision risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Zyczkowski, Marcin & Szlapczynski, Rafal, 2023. "Collision risk-informed weather routing for sailboats," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2021. "Spatial correlation analysis of near ship collision hotspots with local maritime traffic characteristics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Zvyagina, Tatiana & Zvyagin, Petr, 2022. "A model of multi-objective route optimization for a vessel in drifting ice," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    12. Haapasaari, Päivi & Helle, Inari & Lehikoinen, Annukka & Lappalainen, Jouni & Kuikka, Sakari, 2015. "A proactive approach for maritime safety policy making for the Gulf of Finland: Seeking best practices," Marine Policy, Elsevier, vol. 60(C), pages 107-118.
    13. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    14. Shiqi Fan & Zaili Yang & Eduardo Blanco-Davis & Jinfen Zhang & Xinping Yan, 2020. "Analysis of maritime transport accidents using Bayesian networks," Journal of Risk and Reliability, , vol. 234(3), pages 439-454, June.
    15. Bye, Rolf J. & Aalberg, Asbjørn L., 2018. "Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 174-186.
    16. Jinfen Zhang & Ângelo P Teixeira & C. Guedes Soares & Xinping Yan & Kezhong Liu, 2016. "Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1171-1187, June.
    17. Montewka, Jakub & Goerlandt, Floris & Innes-Jones, Gemma & Owen, Douglas & Hifi, Yasmine & Puisa, Romanas, 2017. "Enhancing human performance in ship operations by modifying global design factors at the design stage," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 283-300.
    18. Jiang, Dan & Wu, Bing & Cheng, Zhiyou & Xue, Jie & van Gelder, P.H.A.J.M., 2021. "Towards a probabilistic model for estimation of grounding accidents in fluctuating backwater zone of the Three Gorges Reservoir," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    19. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832017314151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.