IDEAS home Printed from https://ideas.repec.org/a/spr/josatr/v6y2021i1d10.1186_s41072-021-00098-y.html
   My bibliography  Save this article

Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda

Author

Listed:
  • Carine Dominguez-Péry

    (Univ. Grenoble Alpes)

  • Lakshmi Narasimha Raju Vuddaraju

    (Univ. Grenoble Alpes)

  • Isabelle Corbett-Etchevers

    (Univ. Grenoble Alpes)

  • Rana Tassabehji

    (Visiting Fellow at the University of Bath School of Management)

Abstract

Over the past decade the number of maritime transportation accidents has fallen. However, as shipping vessels continue to increase in size, one single incident, such as the oil spills from ‘super’ tankers, can have catastrophic and long-term consequences for marine ecosystems, the environment and local economies. Maritime transport accidents are complex and caused by a combination of events or processes that might ultimately result in the loss of human and marine life, and irreversible ecological, environmental and economic damage. Many studies point to direct or indirect human error as a major cause of maritime accidents, which raises many unanswered questions about the best way to prevent catastrophic human error in maritime contexts. This paper takes a first step towards addressing some of these questions by improving our understanding of upstream maritime accidents from an organisation science perspective—an area of research that is currently underdeveloped. This will provide new and relevant insights by both clarifying how ships can be described in terms of organisations and by considering them in a whole ecosystem and industry. A bibliometric review of extant literature of the causes of maritime accidents related to human error was conducted, and the findings revealed three main root causes of human and organisational error, namely, human resources and management, socio-technical Information Systems and Information Technologies, and individual/cognition-related errors. As a result of the bibliometric review, this paper identifies the gaps and limitations in the literature and proposes a research agenda to enhance our current understanding of the role of human error in maritime accidents. This research agenda proposes new organisational theory perspectives—including considering ships as organisations; types of organisations (highly reliable organisations or self-organised); complex systems and socio-technical systems theories for digitalised ships; the role of power; and developing dynamic safety capabilities for learning ships. By adopting different theoretical perspectives and adapting research methods from social and human sciences, scholars can advance human error in maritime transportation, which can ultimately contribute to addressing human errors and improving maritime transport safety for the wider benefit of the environment and societies ecologies and economies.

Suggested Citation

  • Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
  • Handle: RePEc:spr:josatr:v:6:y:2021:i:1:d:10.1186_s41072-021-00098-y
    DOI: 10.1186/s41072-021-00098-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41072-021-00098-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s41072-021-00098-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trucco, P. & Cagno, E. & Ruggeri, F. & Grande, O., 2008. "A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 845-856.
    2. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1041-1060.
    3. Bing Wu & Xinping Yan & Yang Wang & Di Zhang & C. Guedes Soares, 2017. "Three‐Stage Decision‐Making Model under Restricted Conditions for Emergency Response to Ships Not under Control," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2455-2474, December.
    4. M.J. Cobo & A.G. López-Herrera & E. Herrera-Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    5. Simone Caschili & Francesca Romana Medda, 2012. "A Review of the Maritime Container Shipping Industry as a Complex Adaptive System," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 10(1), pages 1-15.
    6. Hänninen, Maria & Kujala, Pentti, 2012. "Influences of variables on ship collision probability in a Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 27-40.
    7. Goerlandt, Floris & Kujala, Pentti, 2011. "Traffic simulation based ship collision probability modeling," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 91-107.
    8. M.J. Cobo & A.G. López‐Herrera & E. Herrera‐Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    9. Héloïse Berkowitz & Hervé Dumez, 2016. "The Concept of Meta-Organization: Issues for Management Studies," Post-Print hal-01380375, HAL.
    10. Suyi Li & Qiang Meng & Xiaobo Qu, 2012. "An Overview of Maritime Waterway Quantitative Risk Assessment Models," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 496-512, March.
    11. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1061-1075.
    12. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 997-1013.
    13. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    14. Timothy G. Fowler & Eirik Sørgård, 2000. "Modeling Ship Transportation Risk," Risk Analysis, John Wiley & Sons, vol. 20(2), pages 225-244, April.
    15. Benhayoun, Lamiae & Le Dain, Marie-Anne & Dominguez-Péry, Carine & Lyons, Andrew C., 2020. "SMEs embedded in collaborative innovation networks: How to measure their absorptive capacity?," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    16. Kujala, P. & Hänninen, M. & Arola, T. & Ylitalo, J., 2009. "Analysis of the marine traffic safety in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1349-1357.
    17. Wanda J. Orlikowski, 2000. "Using Technology and Constituting Structures: A Practice Lens for Studying Technology in Organizations," Organization Science, INFORMS, vol. 11(4), pages 404-428, August.
    18. Claus Rerup, 2009. "Attentional Triangulation: Learning from Unexpected Rare Crises," Organization Science, INFORMS, vol. 20(5), pages 876-893, October.
    19. Ziaul Haque Munim & Mariia Dushenko & Veronica Jaramillo Jimenez & Mohammad Hassan Shakil & Marius Imset, 2020. "Big data and artificial intelligence in the maritime industry: a bibliometric review and future research directions," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(5), pages 577-597, July.
    20. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1076-1101.
    21. Khan, Bushra & Khan, Faisal & Veitch, Brian & Yang, Ming, 2018. "An operational risk analysis tool to analyze marine transportation in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 485-502.
    22. Montewka, Jakub & Hinz, Tomasz & Kujala, Pentti & Matusiak, Jerzy, 2010. "Probability modelling of vessel collisions," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 573-589.
    23. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2017. "Towards the assessment of potential impact of unmanned vessels on maritime transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 155-169.
    24. Héloïse Berkowitz, 2019. "The urgency of Sustainable Ocean Studies in management," Post-Print halshs-02450850, HAL.
    25. Packendorff, Johann, 1995. "Inquiring into the temporary organization: New directions for project management research," Scandinavian Journal of Management, Elsevier, vol. 11(4), pages 319-333, December.
    26. Sovacool, Benjamin K., 2008. "The costs of failure: A preliminary assessment of major energy accidents, 1907-2007," Energy Policy, Elsevier, vol. 36(5), pages 1802-1820, May.
    27. van Oorschot, Johannes A.W.H. & Hofman, Erwin & Halman, Johannes I.M., 2018. "A bibliometric review of the innovation adoption literature," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 1-21.
    28. Wanda J. Orlikowski, 1992. "The Duality of Technology: Rethinking the Concept of Technology in Organizations," Organization Science, INFORMS, vol. 3(3), pages 398-427, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mochammad Tutuk, 2023. "Mental Workload Analysis of Workers Using the Swedish Occupational Fatigue Index (SOFI) Method at A Job Shop, Sheet Metal, And Pipe Metal Manufacturing Company in Surabaya," Technium, Technium Science, vol. 16(1), pages 411-416.
    2. Jérémie Katembo Kavota & Luc Cassivi & Pierre-Majorique Léger, 2024. "A Systematic Review of Strategic Supply Chain Challenges and Teaching Strategies," Logistics, MDPI, vol. 8(1), pages 1-19, February.
    3. Ji-Min Sur & Young-Ju Kim, 2024. "Multi-Criteria Model for Identifying and Ranking Risky Types of Maritime Accidents Using Integrated Ordinal Priority Approach and Grey Relational Analysis Approach," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    4. Obeng, Francis & Domeh, Daniel & Khan, Faisal & Bose, Neil & Sanli, Elizabeth, 2024. "An operational risk management approach for small fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    5. Ahmad Wahid & Muhammad Yamin Jinca & Taufiqur Rachman & Johny Malisan, 2024. "Influencing Factors of Safety Management System Implementation on Traditional Shipping," Sustainability, MDPI, vol. 16(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abreu, Danilo T.M.P. & Maturana, Marcos C. & Droguett, Enrique Lopez & Martins, Marcelo R., 2022. "Human reliability analysis of conventional maritime pilotage operations supported by a prospective model," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Gino J. Lim & Jaeyoung Cho & Selim Bora & Taofeek Biobaku & Hamid Parsaei, 2018. "Models and computational algorithms for maritime risk analysis: a review," Annals of Operations Research, Springer, vol. 271(2), pages 765-786, December.
    3. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Ramos, M.A. & Thieme, Christoph A. & Utne, Ingrid B. & Mosleh, A., 2020. "Human-system concurrent task analysis for maritime autonomous surface ship operation and safety," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    5. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Schroer, Suzanne & Modarres, Mohammad, 2013. "An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 40-51.
    8. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    9. Zhang, Mingyang & Montewka, Jakub & Manderbacka, Teemu & Kujala, Pentti & Hirdaris, Spyros, 2021. "A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Li, Jue & Li, Heng & Wang, Fan & Cheng, Andy S.K. & Yang, Xincong & Wang, Hongwei, 2021. "Proactive analysis of construction equipment operators’ hazard perception error based on cognitive modeling and a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    12. Porthin, Markus & Liinasuo, Marja & Kling, Terhi, 2020. "Effects of digitalization of nuclear power plant control rooms on human reliability analysis – A review," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    13. Sujan, Mark A. & Embrey, David & Huang, Huayi, 2020. "On the application of Human Reliability Analysis in healthcare: Opportunities and challenges," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    14. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    15. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
    16. Peng Liu & Zhizhong Li, 2014. "Human Error Data Collection and Comparison with Predictions by SPAR‐H," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1706-1719, September.
    17. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    18. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    19. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    20. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:josatr:v:6:y:2021:i:1:d:10.1186_s41072-021-00098-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.