IDEAS home Printed from https://ideas.repec.org/r/eee/jmvana/v32y1990i2p177-203.html
   My bibliography  Save this item

Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2010. "An efficient threshold choice for operational risk capital computation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00544342, HAL.
  2. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
  3. Laurent Barras & Patrick Gagliardini & Olivier Scaillet, 2022. "Skill, Scale, and Value Creation in the Mutual Fund Industry," Journal of Finance, American Finance Association, vol. 77(1), pages 601-638, February.
  4. Heiler, Phillip & Kazak, Ekaterina, 2021. "Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores," Journal of Econometrics, Elsevier, vol. 222(2), pages 1083-1108.
  5. Luis Fernando Melo Velandia & Oscar reinaldo Becerra Camargo, 2005. "Medidas de Riesgo, Características y Técnicas de Medición: Una Aplicación del VAR y el ES a la Tasa Interbancaria de Colombia," Borradores de Economia 343, Banco de la Republica de Colombia.
  6. Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
  7. Pan, Raj Kumar & Sinha, Sitabhra, 2008. "Inverse-cubic law of index fluctuation distribution in Indian markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2055-2065.
  8. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2010. "An efficient threshold choice for operational risk capital computation," Post-Print halshs-00544342, HAL.
  9. Danielsson, Jon & Ergun, Lerby M. & Haan, Laurens de & Vries, Casper G. de, 2016. "Tail index estimation: quantile driven threshold selection," LSE Research Online Documents on Economics 66193, London School of Economics and Political Science, LSE Library.
  10. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
  11. Bolance, Catalina & Guillen, Montserrat & Nielsen, Jens Perch, 2003. "Kernel density estimation of actuarial loss functions," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 19-36, February.
  12. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
  13. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2012. "International diversification: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 871-885.
  14. Wang, Yinzhi & Hobæk Haff, Ingrid & Huseby, Arne, 2020. "Modelling extreme claims via composite models and threshold selection methods," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 257-268.
  15. A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
  16. Kim, Joseph H.T. & Kim, Joocheol, 2015. "A parametric alternative to the Hill estimator for heavy-tailed distributions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 60-71.
  17. Holger Drees, 2012. "Extreme value analysis of actuarial risks: estimation and model validation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 225-264, June.
  18. Alfarano, Simone & Lux, Thomas, 2010. "Extreme value theory as a theoretical background for power law behavior," Kiel Working Papers 1648, Kiel Institute for the World Economy (IfW Kiel).
  19. Jondeau, E. & Rockinger, M., 1999. "The Tail Behavior of Sotck Returns: Emerging Versus Mature Markets," Working papers 66, Banque de France.
  20. Małgorzata Just & Krzysztof Echaust, 2021. "An Optimal Tail Selection in Risk Measurement," Risks, MDPI, vol. 9(4), pages 1-16, April.
  21. Frederico Caeiro & M. Ivette Gomes & Björn Vandewalle, 2014. "Semi-Parametric Probability-Weighted Moments Estimation Revisited," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 1-29, March.
  22. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
  23. Piotr Kokoszka & Hieu Nguyen & Haonan Wang & Liuqing Yang, 2020. "Statistical and probabilistic analysis of interarrival and waiting times of Internet2 anomalies," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 727-744, December.
  24. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
  25. Raúl Susmel, 1998. "Extreme Observations and Diversification in Latin American Emerging Equity Markets," CEMA Working Papers: Serie Documentos de Trabajo. 138, Universidad del CEMA.
  26. Seo, Byungtae & Lindsay, Bruce G., 2010. "A computational strategy for doubly smoothed MLE exemplified in the normal mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1930-1941, August.
  27. Caers, Jef & Beirlant, Jan & Vynckier, Petra, 1998. "Bootstrap confidence intervals for tail indices," Computational Statistics & Data Analysis, Elsevier, vol. 26(3), pages 259-277, January.
  28. Frédéric Ferraty & Ingrid Van Keilegom & Philippe Vieu, 2010. "On the Validity of the Bootstrap in Non‐Parametric Functional Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 286-306, June.
  29. Diego Nicolas López, 2006. "Crisis De Mercados De Bonos Emergentes Y Contagio: Dependencia Extrema," Documentos CEDE 2243, Universidad de los Andes, Facultad de Economía, CEDE.
  30. Dominique Guegan & Bertrand K. Hassani, 2011. "Operational risk: A Basel II++ step before Basel III," Documents de travail du Centre d'Economie de la Sorbonne 11053r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Mar 2012.
  31. Enrico Biffis & Erik Chavez, 2014. "Tail Risk in Commercial Property Insurance," Risks, MDPI, vol. 2(4), pages 1-18, September.
  32. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
  33. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
  34. Krzysztof Echaust & Małgorzata Just, 2020. "Value at Risk Estimation Using the GARCH-EVT Approach with Optimal Tail Selection," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
  35. Geluk, J. L. & Peng, Liang, 2000. "An adaptive optimal estimate of the tail index for MA(l) time series," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 217-227, February.
  36. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
  37. Josep Lluís Carrion-i-Silvestre & Andreu Sansó, 2023. ""Generalized Extreme Value Approximation to the CUMSUMQ Test for Constant Unconditional Variance in Heavy-Tailed Time Series"," IREA Working Papers 202309, University of Barcelona, Research Institute of Applied Economics, revised Jul 2023.
  38. Duc Devroye & J. Beirlant & R. Cao & R. Fraiman & P. Hall & M. Jones & Gábor Lugosi & E. Mammen & J. Marron & C. Sánchez-Sellero & J. Uña & F. Udina & L. Devroye, 1997. "Universal smoothing factor selection in density estimation: theory and practice," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(2), pages 223-320, December.
  39. Max Köhler & Anja Schindler & Stefan Sperlich, 2014. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.
  40. Chollete, Loran & de la Pena , Victor & Lu, Ching-Chih, 2009. "International Diversification: An Extreme Value Approach," UiS Working Papers in Economics and Finance 2009/26, University of Stavanger.
  41. Peng, Liang & Qi, Yongcheng, 2008. "Bootstrap approximation of tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1807-1824, September.
  42. Chin, Wen Cheong, 2008. "Heavy-tailed value-at-risk analysis for Malaysian stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4285-4298.
  43. Mahfuzul Haque & Oscar Varela, 2010. "US-Thailand Bilateral Safety-first Portfolio Optimisation around the 1997 Asian Financial Crisis," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 9(2), pages 171-197, August.
  44. Natalia Markovich & Maksim Ryzhov & Marijus Vaičiulis, 2022. "Tail Index Estimation of PageRanks in Evolving Random Graphs," Mathematics, MDPI, vol. 10(16), pages 1-26, August.
  45. J. Beirlant & A. Berlinet & G. Biau, 2008. "Higher order estimation at Lebesgue points," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 651-677, September.
  46. Dominique Guegan & Bertrand Hassani, 2012. "Operational risk : A Basel II++ step before Basel III," Post-Print halshs-00722029, HAL.
  47. Rostyslav Maiboroda & Olena Sugakova, 2012. "Nonparametric density estimation for symmetric distributions by contaminated data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 109-126, January.
  48. Dominique Guegan & Bertrand Hassani, 2012. "Operational risk : A Basel II++ step before Basel III," PSE-Ecole d'économie de Paris (Postprint) halshs-00722029, HAL.
  49. repec:hal:wpaper:halshs-00722029 is not listed on IDEAS
  50. Dolf Diemont & Kyle Moore & Aloy Soppe, 2016. "The Downside of Being Responsible: Corporate Social Responsibility and Tail Risk," Journal of Business Ethics, Springer, vol. 137(2), pages 213-229, August.
  51. Kumar, Dilip, 2014. "Long range dependence in the high frequency USD/INR exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 134-148.
  52. Caers, Jef & Dyck, Jozef Van, 1998. "Nonparametric tail estimation using a double bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 29(2), pages 191-211, December.
  53. Gonzalez Manteiga, W. & Martinez Miranda, M. D. & Perez Gonzalez, A., 2004. "The choice of smoothing parameter in nonparametric regression through Wild Bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 487-515, October.
  54. Chao Huang & Jin-Guan Lin & Yan-Yan Ren, 2012. "Statistical Inferences for Generalized Pareto Distribution Based on Interior Penalty Function Algorithm and Bootstrap Methods and Applications in Analyzing Stock Data," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 173-193, February.
  55. Peter Hall & Raoul LePage, 1996. "On bootstrap estimation of the distribution of the studentized mean," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 403-421, September.
  56. Tjeerd de Vries & Alexis Akira Toda, 2022. "Capital and Labor Income Pareto Exponents Across Time and Space," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(4), pages 1058-1078, December.
  57. Silverberg, Gerald & Verspagen, Bart, 2007. "The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance," Journal of Econometrics, Elsevier, vol. 139(2), pages 318-339, August.
  58. González-Sánchez, Mariano & Nave Pineda, Juan M., 2023. "Where is the distribution tail threshold? A tale on tail and copulas in financial risk measurement," International Review of Financial Analysis, Elsevier, vol. 86(C).
  59. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2011. "An efficient threshold choice for operational risk capital computation," Post-Print halshs-00790217, HAL.
  60. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  61. P. Lai & Stephen Lee, 2013. "Estimation of central shapes of error distributions in linear regression problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 105-124, February.
  62. Haque, Mahfuzul & Varela, Oscar & Hassan, M. Kabir, 2007. "Safety-first and extreme value bilateral U.S.-Mexican portfolio optimization around the peso crisis and NAFTA in 1994," The Quarterly Review of Economics and Finance, Elsevier, vol. 47(3), pages 449-469, July.
  63. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
  64. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
  65. EL-NOUTY Charles & GUILLOU Armelle, 2000. "On The Bootstrap Accuracy Of The Pareto Index," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 275-290, March.
  66. Mohammadi, Faezeh & Izadi, Muhyiddin & Lai, Chin-Diew, 2016. "On testing whether burn-in is required under the long-run average cost," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 217-224.
  67. Jansen, Dennis W. & Koedijk, Kees G. & de Vries, Casper G., 2000. "Portfolio selection with limited downside risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 247-269, November.
  68. K. Żychaluk, 2014. "Bootstrap bandwidth selection method for local linear estimator in exponential family models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 305-319, June.
  69. Niklas Wagner & Terry Marsh, 2004. "Tail index estimation in small smaples Simulation results for independent and ARCH-type financial return models," Statistical Papers, Springer, vol. 45(4), pages 545-561, October.
  70. Peng, L., 1998. "Asymptotically unbiased estimators for the extreme-value index," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 107-115, June.
  71. Chan, Ngai-Hang & Lee, Thomas C.M. & Peng, Liang, 2010. "On nonparametric local inference for density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 509-515, February.
  72. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
  73. Himadri Ghosh & Prajneshu, 2011. "Statistical learning theory for fitting multimodal distribution to rainfall data: an application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2533-2545, January.
  74. Juan Gonzalez & Daniela Rodriguez & Mariela Sued, 2013. "Threshold selection for extremes under a semiparametric model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 481-500, November.
  75. Zargar, Faisal Nazir & Kumar, Dilip, 2019. "Long range dependence in the Bitcoin market: A study based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 625-640.
  76. Sonia Benito & Carmen López-Martín & Mª Ángeles Navarro, 2023. "Assessing the importance of the choice threshold in quantifying market risk under the POT approach (EVT)," Risk Management, Palgrave Macmillan, vol. 25(1), pages 1-31, March.
  77. Piet Groeneboom, 2021. "Estimation of the incubation time distribution for COVID‐19," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(2), pages 161-179, May.
  78. Djamel Meraghni & Abdelhakim Necir, 2007. "Estimating the Scale Parameter of a Lévy-stable Distribution via the Extreme Value Approach," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 557-572, December.
  79. Philip Kostov & Seamus McErlean, 2004. "Estimating the probability of large negative stock market," Finance 0409011, University Library of Munich, Germany.
  80. Juan M. Vilar Fernández & Alejandro Quintela del Río, 1993. "Técnicas no paramétricas de estimación funcional, con observaciones dependientes," Investigaciones Economicas, Fundación SEPI, vol. 17(1), pages 143-163, January.
  81. Susmel, Raul, 2001. "Extreme observations and diversification in Latin American emerging equity markets," Journal of International Money and Finance, Elsevier, vol. 20(7), pages 971-986, December.
  82. Cao, Ricardo & Cuevas, Antonio & Fraiman, Ricardo, 1995. "Minimum distance density-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 20(6), pages 611-631, December.
  83. Ziegler Klaus, 2006. "On local bootstrap bandwidth choice in kernel density estimation," Statistics & Risk Modeling, De Gruyter, vol. 24(2), pages 291-301, December.
  84. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
  85. Hsieh, Ping-Hung, 2002. "An exploratory first step in teletraffic data modeling: evaluation of long-run performance of parameter estimators," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 263-283, August.
  86. Zhang, Xingmin & Zhang, Shuai, 2021. "Optimal time-varying tail risk network with a rolling window approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
  87. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
  88. Paul J. Northrop & Nicolas Attalides & Philip Jonathan, 2017. "Cross-validatory extreme value threshold selection and uncertainty with application to ocean storm severity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 93-120, January.
  89. Dominique Guegan & Bertrand Hassani, 2011. "Operational risk: A Basel II++ step before Basel III," Post-Print halshs-00639484, HAL.
  90. Haque, Mahfuzul & Kabir Hassan, M. & Varela, Oscar, 2004. "Safety-first portfolio optimization for US investors in emerging global, Asian and Latin American markets," Pacific-Basin Finance Journal, Elsevier, vol. 12(1), pages 91-116, January.
  91. Y. Malevergne & D. Sornette, 2002. "Tail Dependence of Factor Models," Papers cond-mat/0202356, arXiv.org.
  92. Echaust Krzysztof, 2014. "A Comparison of Tail Behaviour of Stock Market Returns," Folia Oeconomica Stetinensia, Sciendo, vol. 14(1), pages 22-34, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.