IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v46y2000i3p217-227.html
   My bibliography  Save this article

An adaptive optimal estimate of the tail index for MA(l) time series

Author

Listed:
  • Geluk, J. L.
  • Peng, Liang

Abstract

For samples of random variables with a regularly varying tail estimating the tail index has received much attention recently. For the proof of asymptotic normality of the tail index estimator second-order regular variation is needed. In this paper we first supplement earlier results on convolution given by Geluk et al. (Stochastic Process. Appl. 69 (1997) 138-159). Secondly, we propose a simple estimator of the tail index for finite moving average time series. We also give a subsampling procedure in order to estimate the optimal sample fraction in the sense of minimal mean squared error.

Suggested Citation

  • Geluk, J. L. & Peng, Liang, 2000. "An adaptive optimal estimate of the tail index for MA(l) time series," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 217-227, February.
  • Handle: RePEc:eee:stapro:v:46:y:2000:i:3:p:217-227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00099-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    2. de Haan, L. & Pereira, T. Themido, 1999. "Estimating the index of a stable distribution," Statistics & Probability Letters, Elsevier, vol. 41(1), pages 39-55, January.
    3. L. De Haan & L. Peng, 1998. "Comparison of tail index estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(1), pages 60-70, March.
    4. Dekkers, A. L. M. & Dehaan, L., 1993. "Optimal Choice of Sample Fraction in Extreme-Value Estimation," Journal of Multivariate Analysis, Elsevier, vol. 47(2), pages 173-195, November.
    5. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    6. Geluk, J. & de Haan, L. & Resnick, S. & Starica, C., 1997. "Second-order regular variation, convolution and the central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 69(2), pages 139-159, September.
    7. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Necir, Abdelhakim & Meraghni, Djamel, 2009. "Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 49-58, August.
    2. Hsieh, Ping-Hung, 2002. "An exploratory first step in teletraffic data modeling: evaluation of long-run performance of parameter estimators," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 263-283, August.
    3. Neves, Claudia & Fraga Alves, M. I., 2004. "Reiss and Thomas' automatic selection of the number of extremes," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 689-704, November.
    4. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    5. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    6. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    7. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    8. Vygantas Paulauskas & Marijus Vaičiulis, 2017. "A class of new tail index estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 461-487, April.
    9. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
    10. A. Dematteo & S. Clémençon, 2016. "On tail index estimation based on multivariate data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 152-176, March.
    11. Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
    12. Pere, Jaakko & Ilmonen, Pauliina & Viitasaari, Lauri, 2024. "On extreme quantile region estimation under heavy-tailed elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    13. Chao Huang & Jin-Guan Lin & Yan-Yan Ren, 2012. "Statistical Inferences for Generalized Pareto Distribution Based on Interior Penalty Function Algorithm and Bootstrap Methods and Applications in Analyzing Stock Data," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 173-193, February.
    14. Małgorzata Just & Krzysztof Echaust, 2021. "An Optimal Tail Selection in Risk Measurement," Risks, MDPI, vol. 9(4), pages 1-16, April.
    15. EL-NOUTY Charles & GUILLOU Armelle, 2000. "On The Bootstrap Accuracy Of The Pareto Index," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 275-290, March.
    16. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    17. Frederico Caeiro & M. Ivette Gomes & Björn Vandewalle, 2014. "Semi-Parametric Probability-Weighted Moments Estimation Revisited," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 1-29, March.
    18. Djamel Meraghni & Abdelhakim Necir, 2007. "Estimating the Scale Parameter of a Lévy-stable Distribution via the Extreme Value Approach," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 557-572, December.
    19. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    20. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.

    More about this item

    Keywords

    Regular variation Tail index;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:46:y:2000:i:3:p:217-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.