IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i8p1807-1824.html
   My bibliography  Save this article

Bootstrap approximation of tail dependence function

Author

Listed:
  • Peng, Liang
  • Qi, Yongcheng

Abstract

For estimating a rare event via the multivariate extreme value theory, the so-called tail dependence function has to be investigated (see [L. de Haan, J. de Ronde, Sea and wind: Multivariate extremes at work, Extremes 1 (1998) 7-45]). A simple, but effective estimator for the tail dependence function is the tail empirical distribution function, see [X. Huang, Statistics of Bivariate Extreme Values, Ph.D. Thesis, Tinbergen Institute Research Series, 1992] or [R. Schmidt, U. Stadtmüller, Nonparametric estimation of tail dependence, Scand. J. Stat. 33 (2006) 307-335]. In this paper, we first derive a bootstrap approximation for a tail dependence function with an approximation rate via the construction approach developed by [K. Chen, S.H. Lo, On a mapping approach to investigating the bootstrap accuracy, Probab. Theory Relat. Fields 107 (1997) 197-217], and then apply it to construct a confidence band for the tail dependence function. A simulation study is conducted to assess the accuracy of the bootstrap approach.

Suggested Citation

  • Peng, Liang & Qi, Yongcheng, 2008. "Bootstrap approximation of tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1807-1824, September.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:8:p:1807-1824
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00031-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    2. Geluk, J.L. & de Haan, L.F.M., 2002. "On bootstrap sample size in extreme value theory," Econometric Institute Research Papers EI 2002-40, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    4. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    5. Einmahl, J. H. J. & Ruymgaart, F. H., 1987. "The almost sure behavior of the oscillation modulus of the multivariate empirical process," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 87-96, November.
    6. EL-NOUTY Charles & GUILLOU Armelle, 2000. "On The Bootstrap Accuracy Of The Pareto Index," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 275-290, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Peng & Yongcheng Qi, 2010. "Smoothed jackknife empirical likelihood method for tail copulas," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 514-536, November.
    2. Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Other publications TiSEM edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.
    3. Einmahl, John & Zhou, C., 2024. "Tail Copula Estimation for Heteroscedastic Extremes," Discussion Paper 2024-003, Tilburg University, Center for Economic Research.
    4. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Asimit, Alexandru V. & Gerrard, Russell & Hou, Yanxi & Peng, Liang, 2016. "Tail dependence measure for examining financial extreme co-movements," Journal of Econometrics, Elsevier, vol. 194(2), pages 330-348.
    7. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 151-162, June.
    8. Einmahl, John & Zhou, C., 2024. "Tail Copula Estimation for Heteroscedastic Extremes," Other publications TiSEM 6bcb09c5-8b19-48b8-9320-b, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    2. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    3. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    4. Małgorzata Just & Krzysztof Echaust, 2021. "An Optimal Tail Selection in Risk Measurement," Risks, MDPI, vol. 9(4), pages 1-16, April.
    5. EL-NOUTY Charles & GUILLOU Armelle, 2000. "On The Bootstrap Accuracy Of The Pareto Index," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 275-290, March.
    6. Geluk, J. L. & Peng, Liang, 2000. "An adaptive optimal estimate of the tail index for MA(l) time series," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 217-227, February.
    7. Tjeerd de Vries & Alexis Akira Toda, 2022. "Capital and Labor Income Pareto Exponents Across Time and Space," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(4), pages 1058-1078, December.
    8. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2010. "An efficient threshold choice for operational risk capital computation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00544342, HAL.
    9. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2011. "An efficient threshold choice for operational risk capital computation," Post-Print halshs-00790217, HAL.
    10. Holger Drees, 2012. "Extreme value analysis of actuarial risks: estimation and model validation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 225-264, June.
    11. Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
    12. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2010. "An efficient threshold choice for operational risk capital computation," Post-Print halshs-00544342, HAL.
    13. Djamel Meraghni & Abdelhakim Necir, 2007. "Estimating the Scale Parameter of a Lévy-stable Distribution via the Extreme Value Approach," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 557-572, December.
    14. Bücher, Axel & Jäschke, Stefan & Wied, Dominik, 2015. "Nonparametric tests for constant tail dependence with an application to energy and finance," Journal of Econometrics, Elsevier, vol. 187(1), pages 154-168.
    15. Heiler, Phillip & Kazak, Ekaterina, 2021. "Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores," Journal of Econometrics, Elsevier, vol. 222(2), pages 1083-1108.
    16. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    17. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    18. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    19. Falk, Michael & Reiss, Rolf-Dieter, 2003. "Efficient estimators and LAN in canonical bivariate POT models," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 190-207, January.
    20. Gissibl, Nadine & Klüppelberg, Claudia & Otto, Moritz, 2018. "Tail dependence of recursive max-linear models with regularly varying noise variables," Econometrics and Statistics, Elsevier, vol. 6(C), pages 149-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:8:p:1807-1824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.